1887

Abstract

Two novel methanotrophic strains, R-49797 and OS501, were isolated from pond water in South Africa and Japan, respectively. Strains R-49797 and OS501 shared 99.7 % 16S rRNA gene sequence similarity. Cells were Gram-stain-negative, non-motile cocci with a diplococcoid tendency and contained type I methanotroph intracytoplasmic membranes. The gene encoding particulate methane monooxygenase was present. Soluble methane monoooxygenase (sMMO) activity, the gene encoding sMMO and the gene encoding nitrogenase were not detected. Methane and methanol were utilized as sole carbon source. The strains grew optimally at 25–33 °C (range 20–37 °C) and at pH 6.3–6.8 (range 5.8–9.0). The strains did not support growth in media supplemented with 1 % (w/v) NaCl. For both strains, the two major fatty acids were Cω7 and C and the DNA G+C content was 65.6 mol%. The isolates belong to the family of the class and cluster most closely among the genera , and , with a 16S rRNA gene sequence similarity of 94.2 % between strain R-49797 and its closest related type strain ( VKM 14L). Based on the low 16S rRNA gene sequence similarities with its nearest phylogenetic neighbouring genera, the formation of a separate lineage based on 16S rRNA and gene phylogenetic analysis, and the unique combination of phenotypic characteristics of the two isolated strains compared with the genera , and , we propose to classify these strains as representing a novel species of a new genus, gen. nov., sp. nov., within the family . The type strain of is R-49797 ( = LMG 27482 = JCM 19379).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.057760-0
2014-06-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/2100.html?itemId=/content/journal/ijsem/10.1099/ijs.0.057760-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Auman A. J. , Stolyar S. , Costello A. M. , Lidstrom M. E. . ( 2000; ). Molecular characterization of methanotrophic isolates from freshwater lake sediment. . Appl Environ Microbiol 66:, 5259–5266. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bodrossy L. , Holmes E. M. , Holmes A. J. , Kovács K. L. , Murrell J. C. . ( 1997; ). Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov.. Arch Microbiol 168:, 493–503. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bowman J. . ( 2006; ). The methanotrophs – the families Methylococcaceae and Methylocystaceae . . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., pp. 266–289. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K.-H. , Stackebrandt E. . . New York:: Springer;. [CrossRef]
    [Google Scholar]
  5. Bowman J. P. , Sly L. I. , Nichols P. D. , Hayward A. C. . ( 1993; ). Revised taxonomy of the methanotrophs: description of Methylobacter gen. Nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group-I methanotrophs. . Int J Syst Bacteriol 43:, 735–753. [CrossRef]
    [Google Scholar]
  6. Cleenwerck I. , Vandemeulebroecke K. , Janssens D. , Swings J. . ( 2002; ). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cole J. R. , Chai B. , Farris R. J. , Wang Q. , Kulam S. A. , McGarrell D. M. , Garrity G. M. , Tiedje J. M. . ( 2005; ). The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. . Nucleic Acids Res 33:, D294–D296. [CrossRef] [PubMed]
    [Google Scholar]
  8. Costello A. M. , Lidstrom M. E. . ( 1999; ). Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. . Appl Environ Microbiol 65:, 5066–5074.[PubMed]
    [Google Scholar]
  9. De Meyer S. E. , van Hoorde K. , Vekeman B. , Braeckman T. , Willems A. . ( 2011; ). Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). . Soil Biol Biochem 43:, 2384–2396. [CrossRef]
    [Google Scholar]
  10. Dedysh S. N. . ( 2009; ). Exploring methanotroph diversity in acidic northern wetlands: molecular and cultivation-based studies. . Microbiology 78:, 655–669. [CrossRef]
    [Google Scholar]
  11. Eshinimaev B. Ts. , Medvedkova K. A. , Khmelenina V. N. , Suzina N. E. , Osipov G. A. , Lysenko A. M. , Trotsenko IuA. . ( 2004; ). [New thermophilic methanotrophs of the genus Methylocaldum]. . Mikrobiologiia 73:, 530–539 (in Russian).[PubMed]
    [Google Scholar]
  12. Ettwig K. F. , Butler M. K. , Le Paslier D. , Pelletier E. , Mangenot S. , Kuypers M. M. , Schreiber F. , Dutilh B. E. , Zedelius J. . & other authors ( 2010; ). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. . Nature 464:, 543–548. [CrossRef] [PubMed]
    [Google Scholar]
  13. Foster J. W. , Davis R. H. . ( 1966; ). A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. . J Bacteriol 91:, 1924–1931.[PubMed]
    [Google Scholar]
  14. Geymonat E. , Ferrando L. , Tarlera S. E. . ( 2011; ). Methylogaea oryzae gen. nov., sp. nov., a mesophilic methanotroph isolated from a rice paddy field. . Int J Syst Evol Microbiol 61:, 2568–2572. [CrossRef] [PubMed]
    [Google Scholar]
  15. Griess P. . ( 1879; ). Bemerkungen zu der abhandlung der H.H. Weselsky und Benedikt “Ueber einige azoverbindungen.”. . Chem Ber 12:, 426–428. [CrossRef]
    [Google Scholar]
  16. Hanson R. S. , Hanson T. E. . ( 1996; ). Methanotrophic bacteria. . Microbiol Rev 60:, 439–471.[PubMed]
    [Google Scholar]
  17. Heimbrook M. E. , Wang W. L. L. , Campbell G. . ( 1989; ). Staining bacterial flagella easily. . J Clin Microbiol 27:, 2612–2615.[PubMed]
    [Google Scholar]
  18. Helm J. , Wendlandt K. D. , Rogge G. , Kappelmeyer U. . ( 2006; ). Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system. . J Appl Microbiol 101:, 387–395. [CrossRef] [PubMed]
    [Google Scholar]
  19. Heyer J. , Berger U. , Hardt M. , Dunfield P. F. . ( 2005; ). Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. . Int J Syst Evol Microbiol 55:, 1817–1826. [CrossRef] [PubMed]
    [Google Scholar]
  20. Hoefman S. , van der Ha D. , De Vos P. , Boon N. , Heylen K. . ( 2012a; ). Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast-growing methane-oxidizing bacteria. . Microb Biotechnol 5:, 368–378. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hoefman S. , Van Hoorde K. , Boon N. , Vandamme P. , De Vos P. , Heylen K. . ( 2012b; ). Survival or revival: long-term preservation induces a reversible viable but non-culturable state in methane-oxidizing bacteria. . PLoS ONE 7:, e34196. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hoefman S. , Heylen K. , de Vos P. . ( 2014; ). Methylomonas lenta sp. nov., a methanotroph isolated from manure and a denitrification tank in Belgium. . Int J Syst Evol Microbiol 61:, in press. [CrossRef] [PubMed]
    [Google Scholar]
  23. Horz H. P. , Yimga M. T. , Liesack W. . ( 2001; ). Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. . Appl Environ Microbiol 67:, 4177–4185. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hutchens E. , Radajewski S. , Dumont M. G. , McDonald I. R. , Murrell J. C. . ( 2004; ). Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. . Environ Microbiol 6:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  25. Iguchi H. , Yurimoto H. , Sakai Y. . ( 2011; ). Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. . Appl Environ Microbiol 77:, 8509–8515. [CrossRef] [PubMed]
    [Google Scholar]
  26. Logan N. A. , Lebbe L. , Hoste B. , Goris J. , Forsyth G. , Heyndrickx M. , Murray B. L. , Syme N. , Wynn-Williams D. D. , De Vos P. . ( 2000; ). Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov.. Int J Syst Evol Microbiol 50:, 1741–1753.[PubMed]
    [Google Scholar]
  27. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. . & other authors ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  28. McDonald I. R. , Kenna E. M. , Murrell J. C. . ( 1995; ). Detection of methanotrophic bacteria in environmental samples with the PCR. . Appl Environ Microbiol 61:, 116–121.[PubMed]
    [Google Scholar]
  29. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  30. Op den Camp H. J. M. , Islam T. , Stott M. B. , Harhangi H. R. , Hynes A. , Schouten S. , Jetten M. S. M. , Birkeland N. K. , Pol A. , Dunfield P. F. . ( 2009; ). Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia . . Environ Microbiol Rep 1:, 293–306. [CrossRef] [PubMed]
    [Google Scholar]
  31. Semrau J. D. , DiSpirito A. A. , Yoon S. . ( 2010; ). Methanotrophs and copper. . FEMS Microbiol Rev 34:, 496–531.[PubMed]
    [Google Scholar]
  32. Spieck E. , Lipski A. . ( 2011; ). Cultivation, growth physiology, and chemotaxonomy of nitrite-oxidizing bacteria. . In Methods in Enzymology: Research on Nitrification and Related Processes , Vol. 486, Part A, pp. 109–130. Edited by Klotz M. G. . . San Diego, CA:: Academic Press;. [CrossRef]
    [Google Scholar]
  33. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  34. Tavormina P. L. , Ussler W. III , Orphan V. J. . ( 2008; ). Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin. . Appl Environ Microbiol 74:, 3985–3995. [CrossRef] [PubMed]
    [Google Scholar]
  35. Vancanneyt M. , Witt S. , Abraham W. R. , Kersters K. , Fredrickson H. L. . ( 1996; ). Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. . Syst Appl Microbiol 19:, 528–540. [CrossRef]
    [Google Scholar]
  36. Vela G. R. , Wyss O. . ( 1964; ). Improved stain for visualization of Azotobacter encystment. . J Bacteriol 87:, 476–477.[PubMed]
    [Google Scholar]
  37. Vorobev A. V. , Baani M. , Doronina N. V. , Brady A. L. , Liesack W. , Dunfield P. F. , Dedysh S. N. . ( 2011; ). Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. . Int J Syst Evol Microbiol 61:, 2456–2463. [CrossRef] [PubMed]
    [Google Scholar]
  38. Whittenbury R. , Davies S. L. , Davey J. F. . ( 1970a; ). Exospores and cysts formed by methane-utilizing bacteria. . J Gen Microbiol 61:, 219–226. [CrossRef] [PubMed]
    [Google Scholar]
  39. Whittenbury R. , Phillips K. C. , Wilkinson J. F. . ( 1970b; ). Enrichment, isolation and some properties of methane-utilizing bacteria. . J Gen Microbiol 61:, 205–218. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.057760-0
Loading
/content/journal/ijsem/10.1099/ijs.0.057760-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error