1887

Abstract

A Gram-reaction-negative, aerobic, non-flagellated, rod-shaped bacterium, designated strain SM1211, was isolated from Antarctic seawater. The isolate grew at 4–35 °C and with 0–10 % (w/v) NaCl. It could produce bacteriochlorophyll , but did not reduce nitrate to nitrite or hydrolyse DNA. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain SM1211 constituted a distinct phylogenetic line within the family and was closely related to species in the genera , , and with 95.1–96.0 % similarities. The predominant cellular fatty acid was Cω7. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid and two unidentified phospholipids. The genomic DNA G+C content of strain SM1211 was 60.7 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic data obtained in this study, strain SM1211 is considered to represent a novel species in a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is SM1211 ( = CCTCC AB 2013147 = KACC 16875).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.057695-0
2014-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1566.html?itemId=/content/journal/ijsem/10.1099/ijs.0.057695-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Biebl H., Allgaier M., Tindall B. J., Koblizek M., Lünsdorf H., Pukall R., Wagner-Döbler I.. ( 2005;). Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. . Int J Syst Evol Microbiol 55:, 1089–1096. [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. Gaboyer F., Tindall B. J., Ciobanu M.-C., Duthoit F., Le Romancer M., Alain K.. ( 2013;). Phaeobacter leonis sp. nov., an alphaproteobacterium from Mediterranean Sea sediments. . Int J Syst Evol Microbiol 63:, 3301–3306. [CrossRef][PubMed]
    [Google Scholar]
  8. Jin H. M., Lee H. J., Kim J. M., Park M. S., Lee K., Jeon C. O.. ( 2011;). Litorimicrobium taeanense gen. nov., sp. nov., isolated from a sandy beach. . Int J Syst Evol Microbiol 61:, 1392–1396. [CrossRef][PubMed]
    [Google Scholar]
  9. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  10. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  11. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  12. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  13. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  14. Martens T., Heidorn T., Pukall R., Simon M., Tindall B. J., Brinkhoff T.. ( 2006;). Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. . Int J Syst Evol Microbiol 56:, 1293–1304. [CrossRef][PubMed]
    [Google Scholar]
  15. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  16. Ruiz-Ponte C., Cilia V., Lambert C., Nicolas J. L.. ( 1998;). Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus. . Int J Syst Bacteriol 48:, 537–542. [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  18. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  19. Sun F., Wang B., Liu X., Lai Q., Du Y., Li G., Luo J., Shao Z.. ( 2010;). Leisingera nanhaiensis sp. nov., isolated from marine sediment. . Int J Syst Evol Microbiol 60:, 275–280. [CrossRef][PubMed]
    [Google Scholar]
  20. Suyama T., Shigematsu T., Takaichi S., Nodasaka Y., Fujikawa S., Hosoya H., Tokiwa Y., Kanagawa T., Hanada S.. ( 1999;). Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β-subclass of the Proteobacteria. . Int J Syst Bacteriol 49:, 449–457. [CrossRef][PubMed]
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  22. Vandecandelaere I., Segaert E., Mollica A., Faimali M., Vandamme P.. ( 2009;). Phaeobacter caeruleus sp. nov., a blue-coloured, colony-forming bacterium isolated from a marine electroactive biofilm. . Int J Syst Evol Microbiol 59:, 1209–1214. [CrossRef][PubMed]
    [Google Scholar]
  23. Yoon J.-H., Kang S.-J., Lee S.-Y., Oh T.-K.. ( 2007;). Phaeobacter daeponensis sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 57:, 856–861. [CrossRef][PubMed]
    [Google Scholar]
  24. Yoon J.-H., Kang S.-J., Lee S.-Y., Oh K.-H., Oh T.-K.. ( 2009;). Seohaeicola saemankumensis gen. nov., sp. nov., isolated from a tidal flat. . Int J Syst Evol Microbiol 59:, 2675–2679. [CrossRef][PubMed]
    [Google Scholar]
  25. Zhang D.-C., Li H.-R., Xin Y.-H., Liu H.-C., Chi Z.-M., Zhou P.-J., Yu Y.. ( 2008;). Phaeobacter arcticus sp. nov., a psychrophilic bacterium isolated from the Arctic. . Int J Syst Evol Microbiol 58:, 1384–1387. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.057695-0
Loading
/content/journal/ijsem/10.1099/ijs.0.057695-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error