1887

Abstract

A novel, anaerobic filamentous bacterium, strain MO-CFX1, was isolated from a methanogenic community, which was originally established from subseafloor sediments collected from off the Shimokita Peninsula, Japan. Cells were non-spore-forming, non-motile, Gram-stain-negative and filamentous. The filaments were longer than 10 µm and 130–150 nm in width. Growth of the strain was observed at 10–37 °C (optimum 25–30 °C), at pH 5.5–8.5 (optimum pH 7.0) and in 0–50 g NaCl l (optimum 15 g NaCl l). The strain was able to grow with a number of carbohydrates in the presence of yeast extract. The major cellular fatty acids were monounsaturated Cω9, Cω7 and saturated C and C. The intact polar lipids of the strain were dominated by diacylglyceride and sphingolipid core lipid structures with monoglycosidic, mixed phosphomonoglycosidic and fatty-acid-modified monoglycosidic polar head groups. The G+C content of the genomic DNA was 52.4 mol%. Based on the comparative 16S rRNA gene sequence analysis, strain MO-CFX1 was affiliated with the class within the phylum and was most closely related to YMTK-2 (sequence identity of 91.0 %). Based on phenotypic and genetic properties of the novel isolate, we propose a novel species representing a new genus gen. nov., sp. nov., for strain MO-CFX1 ( = JCM 17238, = KCTC 5975). This is the first formal description, to our knowledge, of an isolate of the phylum from the deep-sea sedimentary environment.

Funding
This study was supported by the:
  • Japan Society for the Promotion of Science
  • Ministry of Education, Culture, Sports, Science and Technology, Japan
  • European Research Council (ERC)
  • European Union’s Seventh Framework Programme–“Ideas” Specific Programme (Award 247153)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.057547-0
2014-03-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/812.html?itemId=/content/journal/ijsem/10.1099/ijs.0.057547-0&mimeType=html&fmt=ahah

References

  1. Blazejak A., Schippers A. ( 2010 ). High abundance of JS-1- and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. . FEMS Microbiol Ecol 72, 198207. [View Article] [PubMed]
    [Google Scholar]
  2. Doetsch R. N. ( 1981 ). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 2133. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood N. R., Krieg N. R., Phillips G. B. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  3. el-Sharkawy S. H., Yang W., Dostal L., Rosazza J. P. N. ( 1992 ). Microbial oxidation of oleic acid. . Appl Environ Microbiol 58, 21162122. [PubMed]
    [Google Scholar]
  4. Elvert M., Boetius A., Knittel K., Jørgensen B. B. ( 2003 ). Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. . Geomicrobiol J 20, 403419. [View Article]
    [Google Scholar]
  5. Fautz E., Rosenfelder G., Grotjahn L. ( 1979 ). Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. . J Bacteriol 140, 852858. [PubMed]
    [Google Scholar]
  6. Fry J. C., Parkes R. J., Cragg B. A., Weightman A. J., Webster G. ( 2008 ). Prokaryotic biodiversity and activity in the deep subseafloor biosphere. . FEMS Microbiol Ecol 66, 181196. [View Article] [PubMed]
    [Google Scholar]
  7. Grégoire P., Fardeau M.-L., Joseph M., Guasco S., Hamaide F., Biasutti S., Michotey V., Bonin P., Ollivier B. ( 2011 ). Isolation and characterization of Thermanaerothrix daxensis gen. nov., sp. nov., a thermophilic anaerobic bacterium pertaining to the phylum “Chloroflexi”, isolated from a deep hot aquifer in the Aquitaine Basin. . Syst Appl Microbiol 34, 494497. [View Article] [PubMed]
    [Google Scholar]
  8. Imachi H., Sekiguchi Y., Kamagata Y., Loy A., Qiu Y.-L., Hugenholtz P., Kimura N., Wagner M., Ohashi A., Harada H. ( 2006 ). Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. . Appl Environ Microbiol 72, 20802091. [View Article] [PubMed]
    [Google Scholar]
  9. Imachi H., Sakai S., Hirayama H., Nakagawa S., Nunoura T., Takai K., Horikoshi K. ( 2008 ). Exilispira thermophila gen. nov., sp. nov., an anaerobic, thermophilic spirochaete isolated from a deep-sea hydrothermal vent chimney. . Int J Syst Evol Microbiol 58, 22582265. [View Article] [PubMed]
    [Google Scholar]
  10. Imachi H., Sakai S., Nagai H., Yamaguchi T., Takai K. ( 2009 ). Methanofollis ethanolicus sp. nov., an ethanol-utilizing methanogen isolated from a lotus field. . Int J Syst Evol Microbiol 59, 800805. [View Article] [PubMed]
    [Google Scholar]
  11. Imachi H., Aoi K., Tasumi E., Saito Y., Yamanaka Y., Saito Y., Yamaguchi T., Tomaru H., Takeuchi R. & other authors ( 2011 ). Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. . ISME J 5, 19131925. [View Article] [PubMed]
    [Google Scholar]
  12. Inagaki F., Nakagawa S. ( 2008 ). Spatial distribution of the subseafloor life: diversity and biogeography. . In Links Between Geological Processes, Microbial Activities & Evolution of Life, pp. 135158. Edited by Dilek Y., Furnes H., Muehlenbachs K. . Netherlands:: Springer;. [View Article]
    [Google Scholar]
  13. Inagaki F., Nunoura T., Nakagawa S., Teske A., Lever M., Lauer A., Suzuki M., Takai K., Delwiche M. & other authors ( 2006 ). Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. . Proc Natl Acad Sci U S A 103, 28152820. [View Article] [PubMed]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. ( 1969 ). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21132. Edited by Munro N. H. . New York:: Academic Press;. [View Article]
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. & other authors ( 2004 ). arb: a software environment for sequence data. . Nucleic Acids Res 32, 13631371. [View Article] [PubMed]
    [Google Scholar]
  16. Marchand D., Rontani J.-F. ( 2003 ). Visible light-induced oxidation of lipid components of purple sulfur bacteria: a significant process in microbial mats. . Org Geochem 34, 6179. [View Article]
    [Google Scholar]
  17. Moss C. W., Dees S. B. ( 1976 ). Cellular fatty acids and metabolic products of Pseudomonas species obtained from clinical specimens. . J Clin Microbiol 4, 492502. [PubMed]
    [Google Scholar]
  18. Nunoura T., Hirai M., Miyazaki M., Kazama H., Makita H., Hirayama H., Furushima Y., Yamamoto H., Imachi H., Takai K. ( 2013 ). Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexi-dominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov.. Microbes Environ 28, 228235. [View Article] [PubMed]
    [Google Scholar]
  19. Podosokorskaya O. A., Bonch-Osmolovskaya E. A., Novikov A. A., Kolganova T. V., Kublanov I. V. ( 2013 ). Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae . . Int J Syst Evol Microbiol 63, 8692. [View Article] [PubMed]
    [Google Scholar]
  20. Sekiguchi Y., Takahashi H., Kamagata Y., Ohashi A., Harada H. ( 2001 ). In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. . Appl Environ Microbiol 67, 57405749. [View Article] [PubMed]
    [Google Scholar]
  21. Sekiguchi Y., Yamada T., Hanada S., Ohashi A., Harada H., Kamagata Y. ( 2003 ). Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. . Int J Syst Evol Microbiol 53, 18431851. [View Article] [PubMed]
    [Google Scholar]
  22. Sturt H. F., Summons R. E., Smith K., Elvert M., Hinrichs K.-U. ( 2004 ). Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry–new biomarkers for biogeochemistry and microbial ecology. . Rapid Commun Mass Spectrom 18, 617628. [View Article] [PubMed]
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  24. Taranto M. P., Fernandez Murga M. L., Lorca G., de Valdez G. F. ( 2003 ). Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri . . J Appl Microbiol 95, 8691. [View Article] [PubMed]
    [Google Scholar]
  25. Teske A. ( 2013 ). Marine deep sediment microbial communities. . In The Prokaryotes, pp. 123138. Edited by Rosenberg E., DeLong E., Lory S., Stackebrandt E., Thompson F. . Berlin, Heidelberg:: Springer;. [View Article]
    [Google Scholar]
  26. Wörmer L., Lipp J. S., Schröder J. M., Hinrichs K.-U. ( 2013 ). Application of two new LC-ESI-MS methods for improved detection of intact polar lipids (IPLs) in environmental samples. . Org Geochem 59, 1021. [View Article]
    [Google Scholar]
  27. Yamada T., Sekiguchi Y. ( 2009 ). Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi ‘subphylum I’ with natural and biotechnological relevance. . Microbes Environ 24, 205216. [View Article] [PubMed]
    [Google Scholar]
  28. Yamada T., Sekiguchi Y., Hanada S., Imachi H., Ohashi A., Harada H., Kamagata Y. ( 2006 ). Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi . . Int J Syst Evol Microbiol 56, 13311340. [View Article] [PubMed]
    [Google Scholar]
  29. Yamada T., Imachi H., Ohashi A., Harada H., Hanada S., Kamagata Y., Sekiguchi Y. ( 2007 ). Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. . Int J Syst Evol Microbiol 57, 22992306. [View Article] [PubMed]
    [Google Scholar]
  30. Zillig W., Holz I., Janekovic D., Klenk H. P., Imsel E., Trent J., Wunderl S., Forjaz V. H., Coutinho R., Ferreira T. ( 1990 ). Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. . J Bacteriol 172, 39593965. [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.057547-0
Loading
/content/journal/ijsem/10.1099/ijs.0.057547-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error