1887

Abstract

A Gram-staining-negative, strictly aerobic, non-motile, rod-shaped and flexirubin-type-pigmented strain, THG C4-1, was isolated from green tea leaves in Jangheung-gun, Republic of Korea. Strain THG C4-1 grew well at 20–30 °C, at pH 7.0–7.5 and in the absence of NaCl on nutrient agar. Based on 16S rRNA gene sequence comparisons, strain THG C4-1 was most closely related to Soil-3-27 (97.7 %), RHA2-9 (97.2 %), P 461/12 (97.2 %), THG 15 (97.1 %), PHA3-4 (97.0 %) and K105 (97.0 %), but DNA–DNA relatedness between strain THG C4-1 and its closest phylogenetic neighbours was below 21 %. The DNA G+C content was 41.7 mol%. The only isoprenoid quinone detected in strain THG C4-1 was menaquinone 6 (MK-6). The major component of the polyamine pattern was -homospermidine. The major polar lipids were phosphatidylethanolamine and unidentified aminolipids. The major fatty acids were iso-C, iso-C 3-OH and iso-Cω9. These data supported the affiliation of strain THG C4-1 to the genus . The results of physiological and biochemical tests enabled strain THG C4-1 to be differentiated genotypically and phenotypically from recognized species of the genus . Therefore, the novel isolate represents a novel species, for which the name sp. nov. is proposed, with THG C4-1 ( = KACC 16985 = JCM 18745) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.057398-0
2014-03-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/851.html?itemId=/content/journal/ijsem/10.1099/ijs.0.057398-0&mimeType=html&fmt=ahah

References

  1. Behrendt U., Ulrich A., Schumann P.. ( 2008;). Chryseobacterium gregarium sp. nov., isolated from decaying plant material. . Int J Syst Evol Microbiol 58:, 1069–1074. [CrossRef][PubMed]
    [Google Scholar]
  2. Bernardet J.-F., Vancanneyt M., Matte-Tailliez O., Grisez L., Tailliez P., Bizet C., Nowakowski M., Kerouault B., Swings J.. ( 2005;). Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. . Syst Appl Microbiol 28:, 640–660. [CrossRef][PubMed]
    [Google Scholar]
  3. Bernardet J.-F., Hugo C., Bruun B.. ( 2010;). Genus X. Chryseobacterium Vandamme et al. 1994a. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 180–196. Edited by Krieg N. R., Ludwig W., Whitman W. B., Hedlund B. P., Paster B. J., Staley J. T., Ward N., Brown D., Parte A... New York:: Springer;.
    [Google Scholar]
  4. Busse H. J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  5. Cho S. H., Lee K. S., Shin D. S., Han J. H., Park K. S., Lee C. H., Park K. H., Kim S. B.. ( 2010;). Four new species of Chryseobacterium from the rhizosphere of coastal sand dune plants, Chryseobacterium elymi sp. nov., Chryseobacterium hagamense sp. nov., Chryseobacterium lathyri sp. nov. and Chryseobacterium rhizosphaerae sp. nov.. Syst Appl Microbiol 33:, 122–127. [CrossRef][PubMed]
    [Google Scholar]
  6. Collins M. D., Jones D.. ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45:, 316–354.[PubMed]
    [Google Scholar]
  7. de Beer H., Hugo C. J., Jooste P. J., Willems A., Vancanneyt M., Coenye T., Vandamme P. A. R.. ( 2005;). Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. . Int J Syst Evol Microbiol 55:, 2149–2153. [CrossRef][PubMed]
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  9. Fautz E., Reichenbach H.. ( 1980;). A simple test for flexirubin-type pigments. . FEMS Microbiol Ecol 8:, 87–91. [CrossRef]
    [Google Scholar]
  10. Felsenstein J.. ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  11. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  12. Hiraishi A., Ueda Y., Ishihara J., Mori T.. ( 1996;). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. . J Gen Appl Microbiol 42:, 457–469. [CrossRef]
    [Google Scholar]
  13. Hugo C. J., Segers P., Hoste B., Vancanneyt M., Kersters K.. ( 2003;). Chryseobacterium joostei sp. nov., isolated from the dairy environment. . Int J Syst Evol Microbiol 53:, 771–777. [CrossRef][PubMed]
    [Google Scholar]
  14. Im W. T., Yang J. E., Kim S. Y., Yi T. H.. ( 2011;). Chryseobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a Rhus vernicifera-cultivated field. . Int J Syst Evol Microbiol 61:, 1430–1435. [CrossRef][PubMed]
    [Google Scholar]
  15. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J.. ( 2003;). Chryseobacterium defluvii sp. nov., isolated from wastewater. . Int J Syst Evol Microbiol 53:, 93–97. [CrossRef][PubMed]
    [Google Scholar]
  16. Kämpfer P., Vaneechoutte M., Lodders N., De Baere T., Avesani V., Janssens M., Busse H.-J., Wauters G.. ( 2009;). Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. . Int J Syst Evol Microbiol 59:, 2421–2428. [CrossRef][PubMed]
    [Google Scholar]
  17. Kämpfer P., Arun A. B., Young C. C., Chen W. M., Sridhar K. R., Rekha P. D.. ( 2010;). Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. . Int J Syst Evol Microbiol 60:, 1765–1769. [CrossRef][PubMed]
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  19. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  20. Kumar S., Nei M., Dudley J., Tamura K.. ( 2008;). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. . Brief Bioinform 9:, 299–306. [CrossRef][PubMed]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  22. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  23. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  24. Moore D. D., Dowhan D.. ( 1995;). Preparation and analysis of DNA. . In Current Protocols in Molecular Biology, pp. 2–11. Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Wiley;.
    [Google Scholar]
  25. Park M. S., Jung S. R., Lee K. H., Lee M. S., Do J. O., Kim S. B., Bae K. S.. ( 2006;). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. . Int J Syst Evol Microbiol 56:, 433–438. [CrossRef][PubMed]
    [Google Scholar]
  26. Prakash O., Verma M., Sharma P., Kumar M., Kumari K., Singh A., Kumari H., Jit S., Gupta S. K.. & other authors ( 2007;). Polyphasic approach of bacterial classification – an overview of recent advances. . Indian J Microbiol 47:, 98–108. [CrossRef][PubMed]
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  29. Strahan B. L., Failor K. C., Batties A. M., Hayes P. S., Cicconi K. M., Mason C. T., Newman J. D.. ( 2011;). Chryseobacterium piperi sp. nov., isolated from a freshwater creek. . Int J Syst Evol Microbiol 61:, 2162–2166. [CrossRef][PubMed]
    [Google Scholar]
  30. Tai C. J., Kuo H. P., Lee F. L., Chen H. K., Yokota A., Lo C. C.. ( 2006;). Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. . Int J Syst Evol Microbiol 56:, 1771–1776. [CrossRef][PubMed]
    [Google Scholar]
  31. Taibi G., Schiavo M. R., Gueli M. C., Calanni Rindina P., Muratore R., Nicotra C. M. A.. ( 2000;). Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. . J Chromatogr B Biomed Sci Appl 745:, 431–437. [CrossRef][PubMed]
    [Google Scholar]
  32. Tamaoka J., Katayama-Fujimura A., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54:, 31–36. [CrossRef]
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  34. Vandamme P., Bernardet J.-F., Segers P., Kersters K., Holmes B.. ( 1994;). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev.. Int J Syst Bacteriol 44:, 827–831. [CrossRef]
    [Google Scholar]
  35. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J.. ( 1996;). Polyphasic taxonomy, a consensus approach to bacterial systematics. . Microbiol Rev 60:, 407–438.[PubMed]
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  37. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  38. Weon H. Y., Kim B. Y., Yoo S. H., Kwon S. W., Stackebrandt E., Go S. J.. ( 2008;). Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. . Int J Syst Evol Microbiol 58:, 470–473. [CrossRef][PubMed]
    [Google Scholar]
  39. Yoon J. H., Kang S. J., Oh T. K.. ( 2007;). Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. . Int J Syst Evol Microbiol 57:, 1355–1359. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.057398-0
Loading
/content/journal/ijsem/10.1099/ijs.0.057398-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error