1887

Abstract

A Gram-stain-negative bacterium, strain 5410S-62, was isolated from an air sample collected in Suwon, Republic of Korea. It was aerobic, motile, mesophilic and formed rod-shaped cells. Colonies on R2A agar were convex, circular and pale orange with entire margins. Growth occurred at pH 5–9 (optimally at pH 7) and at 10–40 °C (optimally at 28 °C). It did not grow in the presence of 1 % NaCl. Comparative analyses of 16S rRNA gene sequences demonstrated that the novel strain was closely related to members of the genus . Strain 5410S-62 showed the highest sequence similarity (98.2 %) to A2-57. It also showed high 16S rRNA gene sequence similarity (98.1–95.6 %) to members of the genus (98.1 % to SUEMI08, 97.8 % to SUEMI10 and SUEMI03, 97.6 % to PB1 and 95.6 % to CC-AFH3). The strain contained summed feature 3 (Cω6 and/or Cω7), C and summed feature 8 (Cω6 and/or Cω7) as major fatty acids, Q-8 as the only ubiquinone and large amounts of phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. Strain 5410S-62 revealed less than 70 % DNA–DNA relatedness with the type strains of closely related species of the genera and and . Based on the physiological, biochemical and chemotaxonomic data obtained in this study, it is proposed that strain 5410S-62 represents a novel species, sp. nov., with 5410S-62 ( = KACC 16657 =  NBRC 108944) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.057372-0
2014-05-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1552.html?itemId=/content/journal/ijsem/10.1099/ijs.0.057372-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. (editors) ( 1987;). Current Protocols in Molecular Biology. New York:: Greene/Wiley Interscience;.
    [Google Scholar]
  2. Bajerski F., Ganzert L., Mangelsdorf K., Lipski A., Busse H.-J., Padur L., Wagner D.. ( 2013;). Herbaspirillum psychrotolerans sp. nov., a member of the family Oxalobacteraceae from a glacier forefield. . Int J Syst Evol Microbiol 63:, 3197–3203. [CrossRef][PubMed]
    [Google Scholar]
  3. Baldani J. I., Baldani V. L. D., Seldin L., Döbereiner J.. ( 1986;). Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. . Int J Syst Bacteriol 36:, 86–93. [CrossRef]
    [Google Scholar]
  4. Breznak J. A., Costilow R. N.. ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  5. Carro L., Rivas R., León-Barrios M., González-Tirante M., Velázquez E., Valverde A.. ( 2012;). Herbaspirillum canariense sp. nov., Herbaspirillum aurantiacum sp. nov. and Herbaspirillum soli sp. nov., isolated from volcanic mountain soil, and emended description of the genus Herbaspirillum. . Int J Syst Evol Microbiol 62:, 1300–1306. [CrossRef][PubMed]
    [Google Scholar]
  6. Collins M. D.. ( 1985;). Analysis of isoprenoid quinones. . Methods Microbiol 18:, 329–366. [CrossRef]
    [Google Scholar]
  7. Ding L., Yokota A.. ( 2004;). Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov.. Int J Syst Evol Microbiol 54:, 2223–2230. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Im W. T., Bae H. S., Yokota A., Lee S. T.. ( 2004;). Herbaspirillum chlorophenolicum sp. nov., a 4-chlorophenol-degrading bacterium. . Int J Syst Evol Microbiol 54:, 851–855. [CrossRef][PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  11. Kluge A. G., Farris J. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  13. Lin S. Y., Hameed A., Arun A. B., Liu Y. C., Hsu Y. H., Lai W. A., Rekha P. D., Young C. C.. ( 2013;). Description of Noviherbaspirillum malthae gen. nov., sp. nov., isolated from an oil-contaminated soil, and proposal to reclassify Herbaspirillum soli, Herbaspirillum aurantiacum, Herbaspirillum canariense and Herbaspirillum psychrotolerans as Noviherbaspirillum soli comb. nov., Noviherbaspirillum aurantiacum comb. nov., Noviherbaspirillum canariense comb. nov. and Noviherbaspirillum psychrotolerans comb. nov. based on polyphasic analysis. . Int J Syst Evol Microbiol 63:, 4100–4107. [CrossRef][PubMed]
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  15. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  16. Poly F., Monrozier L. J., Bally R.. ( 2001;). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. . Res Microbiol 152:, 95–103. [CrossRef][PubMed]
    [Google Scholar]
  17. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  20. Seldin L., Dubnau D.. ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. . Int J Syst Bacteriol 35:, 151–154. [CrossRef]
    [Google Scholar]
  21. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  22. Stoltzfus J. R., So R., Malarvithi P. P., Ladha J. K., de Bruijn F. J.. ( 1997;). Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. . Plant Soil 194:, 25–36. [CrossRef]
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  24. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  25. Zhang D.-C., Redzic M., Schinner F., Margesin R.. ( 2011;). Glaciimonas immobilis gen. nov., sp. nov., a member of the family Oxalobacteraceae isolated from alpine glacier cryoconite. . Int J Syst Evol Microbiol 61:, 2186–2190. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.057372-0
Loading
/content/journal/ijsem/10.1099/ijs.0.057372-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error