1887

Abstract

An acetic acid bacterium, strain LMG 27439, was isolated from fermenting lambic beer. The cells were Gram-stain-negative, motile rods, catalase-positive and oxidase-negative. Analysis of the 16S rRNA gene sequence revealed the strain was closely related to (99.7 % 16S rRNA gene sequence similarity with the type strain of this species), (99.6 %), (99.6 %), (99.4 %) and (99.2 %). DNA–DNA hybridization with the type strains of these species revealed moderate DNA–DNA hybridization values (31–45 %). Strain LMG 27439 was unable to grow on glycerol or methanol as the sole carbon source, on yeast extract with 10 % ethanol or on glucose-yeast extract medium at 37 °C. It did not produce acid from -arabinose, -galactose or -mannose, nor did it produce 2-keto--gluconic acid, 5-keto--gluconic acid or 2,5-diketo--gluconic acid from -glucose. It did not grow on ammonium as the sole nitrogen source and ethanol as the sole carbon source. These genotypic and phenotypic data distinguished strain LMG 27439 from established species of the genus , and therefore we propose this strain represents a novel species of the genus . The name sp. nov. is proposed, with LMG 27439 ( = DSM 27328) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.057315-0
2014-04-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/4/1083.html?itemId=/content/journal/ijsem/10.1099/ijs.0.057315-0&mimeType=html&fmt=ahah

References

  1. Andrés-Barrao C., Benagli C., Chappuis M., Ortega Pérez R., Tonolla M., Barja F.. ( 2013;). Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting. . Syst Appl Microbiol 36:, 75–81. [CrossRef][PubMed]
    [Google Scholar]
  2. Asai T., Iizuka H., Komagata K.. ( 1964;). The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. . J Gen Appl Microbiol 10:, 95–126. [CrossRef]
    [Google Scholar]
  3. Bartowsky E. J., Henschke P. A.. ( 2008;). Acetic acid bacteria spoilage of bottled red wine – a review. . Int J Food Microbiol 125:, 60–70. [CrossRef][PubMed]
    [Google Scholar]
  4. Bokulich N. A., Bamforth C. W., Mills D. A.. ( 2012;). Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale. . PLoS ONE 7:, e35507. [CrossRef][PubMed]
    [Google Scholar]
  5. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef][PubMed]
    [Google Scholar]
  6. Cleenwerck I., Camu N., Engelbeen K., De Winter T., Vandemeulebroecke K., De Vos P., De Vuyst L.. ( 2007;). Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. . Int J Syst Evol Microbiol 57:, 1647–1652. [CrossRef][PubMed]
    [Google Scholar]
  7. Cleenwerck I., Gonzalez A., Camu N., Engelbeen K., De Vos P., De Vuyst L.. ( 2008;). Acetobacter fabarum sp. nov., an acetic acid bacterium from a Ghanaian cocoa bean heap fermentation. . Int J Syst Evol Microbiol 58:, 2180–2185. [CrossRef][PubMed]
    [Google Scholar]
  8. Cleenwerck I., De Vos P., De Vuyst L.. ( 2010;). Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov.. Int J Syst Evol Microbiol 60:, 2277–2283. [CrossRef][PubMed]
    [Google Scholar]
  9. Gosselé F., Swings J., De Ley J.. ( 1980;). A rapid, simple and simultaneous detection of 2-keto, 5-keto and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. . Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe C1:, 178–181.
    [Google Scholar]
  10. Iino T., Suzuki R., Kosako Y., Ohkuma M., Komagata K., Uchimura T.. ( 2012;). Acetobacter okinawensis sp. nov., Acetobacter papayae sp. nov., and Acetobacter persicus sp. nov.; novel acetic acid bacteria isolated from stems of sugarcane, fruits, and a flower in Japan. . J Gen Appl Microbiol 58:, 235–243. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Lisdiyanti P., Kawasaki H., Seki T., Yamada Y., Uchimura T., Komagata K.. ( 2000;). Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov.. J Gen Appl Microbiol 46:, 147–165. [CrossRef][PubMed]
    [Google Scholar]
  13. Lisdiyanti P., Katsura K., Potacharoen W., Navarro R. R., Yamada Y., Uchimura T., Komagata K.. ( 2003;). Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines. . Microbiol Cult Collect 19:, 91–99.
    [Google Scholar]
  14. Martens H., Dawoud E., Verachtert H.. ( 1991;). Wort enterobacteria and other microbial populations involved during the first month of lambic fermentation. . J Inst Brew 97:, 435–439. [CrossRef]
    [Google Scholar]
  15. Martens H., Iserentant D., Verachtert H.. ( 1997;). Microbiological aspects of a mixed yeast–bacterial fermentation in the production of a special Belgian acidic ale. . J Inst Brew 103:, 85–91. [CrossRef]
    [Google Scholar]
  16. Papalexandratou Z., Vrancken G., De Bruyne K., Vandamme P., De Vuyst L.. ( 2011;). Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. . Food Microbiol 28:, 1326–1338. [CrossRef][PubMed]
    [Google Scholar]
  17. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W. G., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  18. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  19. Raspor P., Goranovic D.. ( 2008;). Biotechnological applications of acetic acid bacteria. . Crit Rev Biotechnol 28:, 101–124. [CrossRef][PubMed]
    [Google Scholar]
  20. Snauwaert I., Papalexandratou Z., De Vuyst L., Vandamme P.. ( 2013;). Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. . Int J Syst Evol Microbiol 63:, 1709–1716. [CrossRef][PubMed]
    [Google Scholar]
  21. Strohalm M., Kavan D., Novák P., Volný M., Havlícek V.. ( 2010;). mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. . Anal Chem 82:, 4648–4651. [CrossRef][PubMed]
    [Google Scholar]
  22. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10:, 512–526.[PubMed]
    [Google Scholar]
  23. Tamura K., Nei M., Kumar S.. ( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101:, 11030–11035. [CrossRef][PubMed]
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  25. Tanasupawat S., Kommanee J., Yukphan P., Muramatsu Y., Nakagawa Y., Yamada Y.. ( 2011;). Acetobacter farinalis sp. nov., an acetic acid bacterium in the α-Proteobacteria. . J Gen Appl Microbiol 57:, 159–167. [CrossRef][PubMed]
    [Google Scholar]
  26. Vaughan A., O’Sullivan T., van Sinderen D.. ( 2005;). Enhancing the microbiological stability of malt and beer – a review. . J Inst Brew 111:, 355–371. [CrossRef]
    [Google Scholar]
  27. Wieme A., Cleenwerck I., Van Landschoot A., Vandamme P.. ( 2012;). Pediococcus lolii DSM 19927T and JCM 15055T are strains of Pediococcus acidilactici. . Int J Syst Evol Microbiol 62:, 3105–3108. [CrossRef][PubMed]
    [Google Scholar]
  28. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V.. ( 1990;). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. . Nucleic Acids Res 18:, 6531–6535. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.057315-0
Loading
/content/journal/ijsem/10.1099/ijs.0.057315-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error