1887

Abstract

A yellow-pigmented, Gram-stain-negative, strictly aerobic, rod-shaped, round-ended bacterium, designated strain 18-11HK, was isolated from a phosphate mine situated in the suburb of Kunming in Yunnan province in south-western China. The taxonomic status of this strain was evaluated by using a polyphasic approach. On the basis of 16S rRNA gene sequence similarity, strain 18-11HK was shown to belong to the genus , showing the highest levels of sequence similarity with respect to ‘’ FW-6 (97.2 %), DSM 12447 (96.7 %), DSM 12444 (96.7 %) and DSM 16702 (96.3 %). Strain 18-11HK had a genomic DNA G+C content of 65.3 mol% and Q-10 as the predominant respiratory quinone. DNA–DNA hybridizations of strain 18-11HK with DSM 12447, DSM 12444 and DSM 16702 showed low relatedness values of 29.6, 33.5 and 32.3 %, respectively. The predominant fatty acids of strain 18-11HK were summed feature 8 (Cω7 and/or Cω6), summed feature 3 (Cω7 and/or Cω6) and C, and the major 2-hydroxy fatty acid was C 2-OH. The polar lipid profile revealed the presence of sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine and some unidentified lipids. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain 18-11HK represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 18-11HK ( = CGMCC 1.12274 = DSM 25975).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.057273-0
2014-07-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/7/2324.html?itemId=/content/journal/ijsem/10.1099/ijs.0.057273-0&mimeType=html&fmt=ahah

References

  1. Baek S. H., Lim J. H., Jin L., Lee H. G., Lee S. T.. ( 2011;). Novosphingobium sediminicola sp. nov. isolated from freshwater sediment. . Int J Syst Evol Microbiol 61:, 2464–2468. [CrossRef][PubMed]
    [Google Scholar]
  2. Collins M. D.. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  4. Dong X. Z., Cai M. Y.. ( 2001;). Determinative Manual for Routine Bacteriology. Beijing:: Scientific Press (English translation);.
    [Google Scholar]
  5. Felsenstein J.. ( 1983;). Parsimony in systematics: biological and statistical issues. . Annu Rev Ecol Syst 14:, 313–333. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Fujii K., Satomi M., Morita N., Motomura T., Tanaka T., Kikuchi S.. ( 2003;). Novosphingobium tardaugens sp. nov., an oestradiol-degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo. . Int J Syst Evol Microbiol 53:, 47–52. [CrossRef][PubMed]
    [Google Scholar]
  8. Glaeser S. P., Bolte K., Busse H. J., Kämpfer P., Grossart H. P., Glaeser J.. ( 2013a;). Novosphingobium aquaticum sp. nov., isolated from the humic-matter-rich bog lake Grosse Fuchskuhle. . Int J Syst Evol Microbiol 63:, 2630–2636. [CrossRef][PubMed]
    [Google Scholar]
  9. Glaeser S. P., Bolte K., Martin K., Busse H. J., Grossart H. P., Kämpfer P., Glaeser J.. ( 2013b;). Novosphingobium fuchskuhlense sp. nov., isolated from the north-east basin of Lake Grosse Fuchskuhle. . Int J Syst Evol Microbiol 63:, 586–592. [CrossRef][PubMed]
    [Google Scholar]
  10. Huß V. A., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  11. Kämpfer P., Young C. C., Busse H. J., Lin S. Y., Rekha P. D., Arun A. B., Chen W. M., Shen F. T., Wu Y. H.. ( 2011;). Novosphingobium soli sp. nov., isolated from soil. . Int J Syst Evol Microbiol 61:, 259–263. [CrossRef][PubMed]
    [Google Scholar]
  12. Kates M.. ( 1986;). Techniques of Lipidology: Isolation, Analysis and Identification of lipids, , 2nd edn.. Amsterdam:: Elsevier;.
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  14. Kim J. K., He D., Liu Q. M., Park H. Y., Jung M. S., Yoon M. H., Kim S. C., Im W. T.. ( 2013;). Novosphingobium ginsenosidimutans sp. nov., with the ability to convert ginsenoside. . J Microbiol Biotechnol 23:, 444–450. [CrossRef][PubMed]
    [Google Scholar]
  15. Lim Y. W., Moon E. Y., Chun J.. ( 2007;). Reclassification of Flavobacterium resinovorum Delaporte and Daste 1956 as Novosphingobium resinovorum comb. nov., with Novosphingobium subarcticum (Nohynek et al. 1996) Takeuchi et al. 2001 as a later heterotypic synonym. . Int J Syst Evol Microbiol 57:, 1906–1908. [CrossRef][PubMed]
    [Google Scholar]
  16. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  17. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  18. Niharika N., Moskalikova H., Kaur J., Sedlackova M., Hampl A., Damborsky J., Prokop Z., Lal R.. ( 2013;). Novosphingobium barchaimii sp. nov., isolated from hexachlorocyclohexane-contaminated soil. . Int J Syst Evol Microbiol 63:, 667–672. [CrossRef][PubMed]
    [Google Scholar]
  19. Reasoner D. J., Geldreich E. E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49:, 1–7.[PubMed]
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  21. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  22. Saxena A., Anand S., Dua A., Sangwan N., Khan F., Lal R.. ( 2013;). Novosphingobium lindaniclasticum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. . Int J Syst Evol Microbiol 63:, 2160–2167. [CrossRef][PubMed]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  24. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  25. Takeuchi M., Hamana K., Hiraishi A.. ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  28. Tiirola M. A., Busse H. J., Kämpfer P., Männistö M. K.. ( 2005;). Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. . Int J Syst Evol Microbiol 55:, 583–588. [CrossRef][PubMed]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Evol Microbiol 37:, 463–464.
    [Google Scholar]
  30. Xie F., Ma H., Quan S., Liu D., Chen G., Chao Y., Qian S.. ( 2014;). Pseudomonas kunmingensis sp. nov., an exopolysaccharide-producing bacterium isolated from a phosphate mine. . Int J Syst Evol Microbiol 64:, 559–564. [CrossRef][PubMed]
    [Google Scholar]
  31. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H.. ( 1990;). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. . Microbiol Immunol 34:, 99–119. [CrossRef][PubMed]
    [Google Scholar]
  32. Yang Z.. ( 1997;). paml: a program package for phylogenetic analysis by maximum likelihood. . Comput Appl Biosci 13:, 555–556.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.057273-0
Loading
/content/journal/ijsem/10.1099/ijs.0.057273-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error