1887

Abstract

A novel aerobic, non-spore-forming, non-motile, catalase- and oxidase-positive, Gram-stain-negative, coccoid to short-rod-shaped bacterial strain, designated YW11, was isolated from soil under long-term application of triazophos. The strain was able to hydrolyse triazophos. Strain YW11 grew at 15–40 °C (optimum at 28 °C), at pH 5.0–8.0 (optimum at pH 7.5) and with 0–5.0 % (w/v) NaCl (optimum at 0.5 %). The major respiratory quinone was ubiquinone 10 (Q-10) and the major cellular fatty acids were Cω7, C, C 2-OH and C. The genomic DNA G+C content of strain YW11 was 69.6±0.5 mol%. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, an unknown glycolipid and two unknown aminolipids. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that strain YW11 was a member of the genus , and showed the highest sequence similarity to KACC 11686 (97.9 %) and KACC 19645 (97.8 %) and then to KACC 13843 (96.9 %). Strain YW11 showed low DNA–DNA relatedness with KACC 11686 (32.3±2.9 %), KACC 16549 (28.2±2.6 %) and KACC 13843 (30.2±2.6 %). Based on the results of phylogenetic analysis and DNA–DNA hybridization, the whole-cell fatty acid composition as well as biochemical characteristics, strain YW11 was clearly distinguished from all recognized species of the genus and should be assigned to a novel species of the genus , for which the name sp. nov. is proposed. The type strain is YW11 ( = KACC 17225 = CCTCC AB2013041).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.057000-0
2014-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/4/1127.html?itemId=/content/journal/ijsem/10.1099/ijs.0.057000-0&mimeType=html&fmt=ahah

References

  1. An D. S., Lee H. G., Lee S. T., Im W. T.. ( 2009;). Rhodanobacter ginsenosidimutans sp. nov., isolated from soil of a ginseng field in South Korea. . Int J Syst Evol Microbiol 59:, 691–694. [CrossRef][PubMed]
    [Google Scholar]
  2. Baik K. S., Park S. C., Choe H. N., Kim S. N., Moon J.-H., Seong C. N.. ( 2012;). Roseomonas riguiloci sp. nov., isolated from wetland freshwater. . Int J Syst Evol Microbiol 62:, 3024–3029. [CrossRef][PubMed]
    [Google Scholar]
  3. Bibashi E., Sofianou D., Kontopoulou K., Mitsopoulos E., Kokolina E.. ( 2000;). Peritonitis due to Roseomonas fauriae in a patient undergoing continuous ambulatory peritoneal dialysis. . J Clin Microbiol 38:, 456–457.[PubMed]
    [Google Scholar]
  4. Bligh E. G., Dyer W. J.. ( 1959;). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef][PubMed]
    [Google Scholar]
  5. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  6. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  7. Cowan S. T., Steel K. J.. ( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  8. Eck R. V., Dayhoff M. O.. ( 1966;). Atlas of Protein Sequence and Structure. Silver Springs, MD:: National Biomedical Research Foundation;.
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  10. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: A maximum likelihood approach. . J. Mol. Evol. 17:, 368–376. [CrossRef]
    [Google Scholar]
  11. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  12. Furuhata K., Miyamoto H., Goto K., Kato Y., Hara M., Fukuyama M.. ( 2008;). Roseomonas stagni sp. nov., isolated from pond water in Japan. . J Gen Appl Microbiol 54:, 167–171. [CrossRef][PubMed]
    [Google Scholar]
  13. Gallego V., Sánchez-Porro C., García M. T., Ventosa A.. ( 2006;). Roseomonas aquatica sp. nov., isolated from drinking water. . Int J Syst Evol Microbiol 56:, 2291–2295. [CrossRef][PubMed]
    [Google Scholar]
  14. Han X. Y., Pham A. S., Tarrand J. J., Rolston K. V., Helsel L. O., Levett P. N.. ( 2003;). Bacteriologic characterization of 36 strains of Roseomonas species and proposal of Roseomonas mucosa sp. nov. and Roseomonas gilardii subsp. rosea subsp. nov.. Am J Clin Pathol 120:, 256–264. [CrossRef][PubMed]
    [Google Scholar]
  15. Jiang C.-Y., Dai X., Wang B.-J., Zhou Y.-G., Liu S.-J.. ( 2006;). Roseomonas lacus sp. nov., isolated from freshwater lake sediment. . Int J Syst Evol Microbiol 56:, 25–28. [CrossRef][PubMed]
    [Google Scholar]
  16. Kämpfer P., Andersson M. A., Jäckel U., Salkinoja-Salonen M.. ( 2003;). Teichococcus ludipueritiae gen. nov. sp. nov., and Muricoccus roseus gen. nov. sp. nov. representing two new genera of the α-1 subclass of the Proteobacteria. . Syst Appl Microbiol 26:, 23–29. [CrossRef][PubMed]
    [Google Scholar]
  17. Kim M. S., Baik K. S., Park S. C., Rhee M. S., Oh H. M., Seong C. N.. ( 2009;). Roseomonas frigidaquae sp. nov., isolated from a water-cooling system. . Int J Syst Evol Microbiol 59:, 1630–1634. [CrossRef][PubMed]
    [Google Scholar]
  18. Kim S.-J., Weon H.-Y., Ahn J.-H., Hong S.-B., Seok S.-J., Whang K.-S., Kwon S.-W.. ( 2013;). Roseomonas aerophila sp. nov., isolated from air. . Int J Syst Evol Microbiol 63:, 2334–2337. [CrossRef][PubMed]
    [Google Scholar]
  19. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  20. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Evol Microbiol 38:, 358–361.
    [Google Scholar]
  21. Lane D. L.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  22. Lopes A., Espirito Santo C., Grass G., Chung A. P., Morais P. V.. ( 2011;). Roseomonas pecuniae sp. nov., isolated from the surface of a copper-alloy coin. . Int J Syst Evol Microbiol 61:, 610–615. [CrossRef][PubMed]
    [Google Scholar]
  23. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  24. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  25. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Microbiol 47:, 87–95.
    [Google Scholar]
  26. Nutaratat P., Srisuk N., Duangmal K., Yurimoto H., Sakai Y., Muramatsu Y., Nakagawa Y.. ( 2013;). Roseomonas musae sp. nov., a new bacterium isolated from a banana phyllosphere. . Antonie van Leeuwenhoek 103:, 617–624. [CrossRef][PubMed]
    [Google Scholar]
  27. Ohta H., Hattori T.. ( 1983;). Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. . Antonie van Leeuwenhoek 49:, 429–446.[PubMed]
    [Google Scholar]
  28. Rihs J. D., Brenner D. J., Weaver R. E., Steigerwalt A. G., Hollis D. G., Yu V. L.. ( 1993;). Roseomonas, a new genus associated with bacteremia and other human infections. . J Clin Microbiol 31:, 3275–3283.[PubMed]
    [Google Scholar]
  29. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  30. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  31. Sánchez-Porro C., Gallego V., Busse H.-J., Kämpfer P., Ventosa A.. ( 2009;). Transfer of Teichococcus ludipueritiae and Muricoccus roseus to the genus Roseomonas, as Roseomonas ludipueritiae comb. nov. and Roseomonas rosea comb. nov., respectively, and emended description of the genus Roseomonas. . Int J Syst Evol Microbiol 59:, 1193–1198. [CrossRef][PubMed]
    [Google Scholar]
  32. Sandoe J. A. T., Malnick H., Loudon K. W.. ( 1997;). A case of peritonitis caused by Roseomonas gilardii in a patient undergoing continuous ambulatory peritoneal dialysis. . J Clin Microbiol 35:, 2150–2152.[PubMed]
    [Google Scholar]
  33. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI;.
  34. September S. M., Brözel V. S., Venter S. N.. ( 2004;). Diversity of nontuberculoid Mycobacterium species in biofilms of urban and semiurban drinking water distribution systems. . Appl Environ Microbiol 70:, 7571–7573. [CrossRef][PubMed]
    [Google Scholar]
  35. Sfanos K., Harmody D., Dang P., Ledger A., Pomponi S., McCarthy P., Lopez J.. ( 2005;). A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. . Syst Appl Microbiol 28:, 242–264. [CrossRef][PubMed]
    [Google Scholar]
  36. Singh B. K., Walker A.. ( 2006;). Microbial degradation of organophosphorus compounds. . FEMS Microbiol Rev 30:, 428–471. [CrossRef][PubMed]
    [Google Scholar]
  37. Subudhi C. P. K., Adedeji A., Kaufmann M. E., Lucas G. S., Kerr J. R.. ( 2001;). Fatal Roseomonas gilardii bacteremia in a patient with refractory blast crisis of chronic myeloid leukemia. . Clin Microbiol Infect 7:, 573–575. [CrossRef][PubMed]
    [Google Scholar]
  38. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S.. ( 2001;). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov.. Int J Syst Evol Microbiol 51:, 1639–1652. [CrossRef][PubMed]
    [Google Scholar]
  39. Tamaoka J., Katayama-Fujimura Y., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54:, 31–36. [CrossRef]
    [Google Scholar]
  40. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  41. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  42. Venkata Ramana V., Sasikala Ch., Takaichi S., Ramana Ch. V.. ( 2010;). Roseomonas aestuarii sp. nov., a bacteriochlorophyll-a containing alphaproteobacterium isolated from an estuarine habitat of India. . Syst Appl Microbiol 33:, 198–203. [CrossRef][PubMed]
    [Google Scholar]
  43. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  44. Weyant R. S., Whitney A. M.. ( 2005;). Genus Roseomonas Rihs, Brenner, Weaver, Steigerwalt, Hollis, and Yu 1998, 627VP (Effective publication: Rihs, Brenner, Weaver, Steigerwalt, Hollis, and Yu 1993, 3282). . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2C, pp. 88–92. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  45. Yoo S. H., Weon H. Y., Noh H. J., Hong S. B., Lee C. M., Kim B. Y., Kwon S. W., Go S. J.. ( 2008;). Roseomonas aerilata sp. nov., isolated from an air sample. . Int J Syst Evol Microbiol 58:, 1482–1485. [CrossRef][PubMed]
    [Google Scholar]
  46. Yoon J. H., Kang S. J., Oh H. W., Oh T. K.. ( 2007;). Roseomonas terrae sp. nov.. Int J Syst Evol Microbiol 57:, 2485–2488. [CrossRef][PubMed]
    [Google Scholar]
  47. Zhang Y. Q., Yu L. Y., Wang D., Liu H. Y., Sun C. H., Jiang W., Zhang Y. Q., Li W. J.. ( 2008;). Roseomonas vinacea sp. nov., a Gram-negative coccobacillus isolated from a soil sample. . Int J Syst Evol Microbiol 58:, 2070–2074. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.057000-0
Loading
/content/journal/ijsem/10.1099/ijs.0.057000-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error