1887

Abstract

The G+C content of a genome is frequently used in taxonomic descriptions of species and genera. In the past it has been determined using conventional, indirect methods, but it is nowadays reasonable to calculate the DNA G+C content directly from the increasingly available and affordable genome sequences. The expected increase in accuracy, however, might alter the way in which the G+C content is used for drawing taxonomic conclusions. We here re-estimate the literature assumption that the G+C content can vary up to 3–5 % within species using genomic datasets. The resulting G+C content differences are compared with DNA–DNA hybridization (DDH) similarities calculated using the GGDC web server, with 70 % similarity as the gold standard threshold for species boundaries. The results indicate that the G+C content, if computed from genome sequences, varies no more than 1 % within species. Statistical models based on larger differences alone can reject the hypothesis that two strains belong to the same species. Because DDH similarities between two non-type strains occur in the genomic datasets, we also examine to what extent and under which conditions such a similarity could be <70 % even though the similarity of either strain to a type strain was ≥70 %. In theory, their similarity could be as low as 50 %, whereas empirical data suggest a boundary closer (but not identical) to 70 %. However, it is shown that using a 50 % boundary would not affect the conclusions regarding the DNA G+C content. Hence, we suggest that discrepancies between G+C content data provided in species descriptions on the one hand and those recalculated after genome sequencing on the other hand ≥1 % are due to significant inaccuracies of the applied conventional methods and accordingly call for emendations of species descriptions.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.056994-0
2014-02-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/352.html?itemId=/content/journal/ijsem/10.1099/ijs.0.056994-0&mimeType=html&fmt=ahah

References

  1. Auch A. F., Klenk H.-P., Göker M.. ( 2010a;). Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. . Stand Genomic Sci 2:, 142–148. [CrossRef][PubMed]
    [Google Scholar]
  2. Auch A. F., von Jan M., Klenk H.-P., Göker M.. ( 2010b;). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. . Stand Genomic Sci 2:, 117–134. [CrossRef][PubMed]
    [Google Scholar]
  3. Brenner D. J.. ( 1973;). Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. . Int J Syst Bacteriol 23:, 298–307. [CrossRef]
    [Google Scholar]
  4. Crawley M. J.. ( 2007;). The R Book. Chichester:: Wiley;. [CrossRef]
    [Google Scholar]
  5. Euzéby J. P.. ( 1997;). List of bacterial names with standing in nomenclature: a folder available on the internet. . Int J Syst Bacteriol 47:, 590–592. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 2004;). Inferring Phylogenies. Sunderland, MA:: Sinauer Associates;.
    [Google Scholar]
  7. Göker M., Klenk H.-P.. ( 2013;). Phylogeny-driven target selection for large-scale genome-sequencing (and other) projects. . Stand Genomic Sci 8:, 360–374. [CrossRef][PubMed]
    [Google Scholar]
  8. Göker M., García-Blázquez G., Voglmayr H., Tellería M. T., Martín M. P.. ( 2009;). Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. . PLoS ONE 4:, e6319. [CrossRef][PubMed]
    [Google Scholar]
  9. Henz S. R., Huson D. H., Auch A. F., Nieselt-Struwe K., Schuster S. C. C.. ( 2005;). Whole-genome prokaryotic phylogeny. . Bioinformatics 21:, 2329–2335. [CrossRef][PubMed]
    [Google Scholar]
  10. Johnson J. L., Whitman W. B.. ( 2007;). Similarity analysis of DNAs. . In Methods for General and Molecular Microbiology, pp. 624–652. Edited by Beveridge T. J. , Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  11. Klenk H.-P., Göker M.. ( 2010;). En route to a genome-based classification of Archaea and Bacteria?. Syst Appl Microbiol 33:, 175–182. [CrossRef][PubMed]
    [Google Scholar]
  12. Ko C. Y., Johnson J. L., Barnett L. B., McNair H. M., Vercellotti J. R.. ( 1977;). A sensitive estimation of the percentage of guanine plus cytosine in deoxyribonucleic acid by high performance liquid chromatography. . Anal Biochem 80:, 183–192. [CrossRef][PubMed]
    [Google Scholar]
  13. Konstantinidis K. T., Tiedje J. M.. ( 2005;). Genomic insights that advance the species definition for prokaryotes. . Proc Natl Acad Sci U S A 102:, 2567–2572. [CrossRef][PubMed]
    [Google Scholar]
  14. Köser C. U., Ellington M. J., Cartwright E. J. P., Gillespie S. H., Brown N. M., Farrington M., Holden M. T. G., Dougan G., Bentley S. D.. & other authors ( 2012;). Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. . PLoS Pathog 8:, e1002824. [CrossRef][PubMed]
    [Google Scholar]
  15. Liu L., Li Y., Li S., Ni H., He Y., Pong R., Lin D., Lu L., Law M.. ( 2012;). Comparison of next-generation sequencing systems. . J Biomed Biotechnol 2012, 251364.
    [Google Scholar]
  16. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  17. Mavromatis K., Land M. L., Brettin T. S., Quest D. J., Copeland A., Clum A., Goodwin L., Woyke T., Lapidus A.. & other authors ( 2012;). The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation. . PLoS ONE 7:, e48837. [CrossRef][PubMed]
    [Google Scholar]
  18. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M.. ( 2013a;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics 14:, 60. [CrossRef][PubMed]
    [Google Scholar]
  19. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H.-P.. ( 2013b;). When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195:, 413–418. [CrossRef][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Mesbah N. M., Whitman W. B., Mesbah M.. ( 2011;). Determination of the G+C content of prokaryotes. . In Taxonomy of Prokaryotes, pp. 299–324. Edited by Rainey F., Oren A... Waltham, MA:: Academic Press;. [CrossRef]
    [Google Scholar]
  22. Moreira A. P. B., Pereira N. Jr, Thompson F. L.. ( 2011;). Usefulness of a real-time PCR platform for G+C content and DNA–DNA hybridization estimations in vibrios. . Int J Syst Evol Microbiol 61:, 2379–2383. [CrossRef][PubMed]
    [Google Scholar]
  23. Nelder J. A., Wedderburn R. W. M.. ( 1972;). Generalized linear models. . J R Stat Soc [Ser A] 135:, 370–384. [CrossRef]
    [Google Scholar]
  24. Owen R. J., Hill L. R., Lapage S. P.. ( 1969;). Determination of DNA base compositions from melting profiles in dilute buffers. . Biopolymers 7:, 503–516. [CrossRef][PubMed]
    [Google Scholar]
  25. Palaniappan K., Meier-Kolthoff J. P., Teshima H., Nolan M., Lapidus A., Tice H., Glavina Del Rio T., Cheng J. F., Han C.. & other authors ( 2013;). Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701T) and emended description of the genus Thermanaerovibrio. . Stand Genomic Sci 9:, 57–70. [CrossRef]
    [Google Scholar]
  26. R Development Core Team ( 2013;). R: A Language and Environment for Statistical Computing. Vienna:: R Foundation for Statistical Computing;.
    [Google Scholar]
  27. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  28. Rosselló-Mora R., Amann R.. ( 2001;). The species concept for prokaryotes. . FEMS Microbiol Rev 25:, 39–67. [CrossRef][PubMed]
    [Google Scholar]
  29. Schildkraut C. L., Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. . J Mol Biol 4:, 430–443. [CrossRef][PubMed]
    [Google Scholar]
  30. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociations and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  31. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J.. & other authors ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef][PubMed]
    [Google Scholar]
  32. Swofford D. L., Olsen G. J., Waddell P. J., Hillis D. M.. ( 1996;). Phylogenetic inference. . In Molecular Systematics, pp. 407–514. Edited by Hillis D. M., Moritz C., Mable B. K... Sunderland, MA:: Sinauer Associates;.
    [Google Scholar]
  33. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.056994-0
Loading
/content/journal/ijsem/10.1099/ijs.0.056994-0
Loading

Data & Media loading...

Supplements

Supp Data 1

PDF

Supp Data 2

PDF

Supp Data 3

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error