1887

Abstract

The taxonomic position of strain JL-22, isolated from litter of a bamboo () forest, was determined using a polyphasic approach. The organism had phenotypic and morphological properties consistent with it being a member of the genus . Phylogenetic analysis of the 16S rRNA gene sequence showed that strain JL-22 was closely related to NRRL B-12281 (99.2 %), JCM 4757 (99.0 %) and NBRC 12753 (99.0 %). However, the results of DNA–DNA hybridization and physiological and biochemical tests showed that strain JL-22 could be differentiated from its closest phylogenetic relatives both genotypically and phenotypically. Based on phenotypic and genotypic data, strain JL-22 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JL-22 ( = KACC 17180 = NBRC 109806).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.056895-0
2014-08-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2517.html?itemId=/content/journal/ijsem/10.1099/ijs.0.056895-0&mimeType=html&fmt=ahah

References

  1. Collins M. D.. ( 1985;). Isoprenoid quinone analysis in bacterial classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  2. Cui X. L., Mao P. H., Zeng M., Li W. J., Zhang L. P., Xu L. H., Jiang C. L.. ( 2001;). Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. . Int J Syst Evol Microbiol 51:, 357–363.[PubMed]
    [Google Scholar]
  3. Euzeby J. P.. ( 2013;). List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. . (Last full update: June 2013) http://www.bacterio.net/.
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Takeuchi N., Yamamoto H., Liu S.-L., Miura H., Matsui K., Yabuuchi E.. ( 1988;). Simple genetic identification method to identify viridans group streptococci by colorimetric dot hybridization and quantitative fluorometric hybridization in microdilution wells. . J Clin Microbiol 26:, 1708–1713.[PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Biol 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. . Washington, DC:: American Society for Microbiology;.
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  12. Küster E., Williams S. T.. ( 1964;). Selection of media for isolation of streptomycetes. . Nature 202:, 928–929. (London). [CrossRef][PubMed]
    [Google Scholar]
  13. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). Clustal w and Clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  14. Lazzarini A., Cavaletti L., Toppo G., Marinelli F.. ( 2000;). Rare genera of actinomycetes as potential producers of new antibiotics. . Antonie van Leeuwenhoek 78:, 399–405. [CrossRef][PubMed]
    [Google Scholar]
  15. Lechevalier M. P., Lechevalier H.. ( 1970;). Chemical composition as a criterion in the classification of aerobic actinomycetes. . Int J Syst Bacteriol 20:, 435–443. [CrossRef]
    [Google Scholar]
  16. Lechevalier M. P., Lechevalier H. A.. ( 1980;). The chemotaxonomy of actinomycetes. . In Actinomycete Taxonomy (Society for Industrial Microbiology Special Publication no. 6), pp. 227–291. Edited by Dietz A., Thayer D. W... Arlington, VA:: Society for Industrial Microbiology;.
    [Google Scholar]
  17. Lee H. J., Whang K. S.. ( 2014;). Streptomyces graminilatus sp. nov., isolated from bamboo litter. . Int J Syst Evol Microbiol 64:, 528–532. [CrossRef][PubMed]
    [Google Scholar]
  18. Lee H. J., Han S. I., Whang K. S.. ( 2012;). Streptomyces gramineus sp. nov., an antibiotic-producing actinobacterium isolated from bamboo (Sasa borealis) rhizosphere soil. . Int J Syst Evol Microbiol 62:, 856–859. [CrossRef][PubMed]
    [Google Scholar]
  19. McCarthy A. J., Williams S. T.. ( 1992;). Actinomycetes as agents of biodegradation in the environment–a review. . Gene 115:, 189–192. [CrossRef][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye G., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  24. Shirling E. B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  25. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  28. Williams S. T., Goodfellow M., Alderson G.. ( 1989;). Genus Streptomyces Waksman and Henrici 1943, 339AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 4, pp. 2452–2492. Edited by Williams S. T., Sharpe M. E., Holt J. G... Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.056895-0
Loading
/content/journal/ijsem/10.1099/ijs.0.056895-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error