1887

Abstract

A Gram-negative, orange-colony-forming, aerobic and non-flagellated bacterium, designated strain SM1202, was isolated from marine sediment of Kongsfjorden, Svalbard. Analysis of 16S rRNA gene sequences revealed that strain SM1202 was phylogenetically closely related to the genus . It shared the highest 16S rRNA gene sequence similarity with the type strain of (94.2 %) and 92.7–93.9 % sequence similarity with type strains of other known species of the genus . The strain grew at 4–35 °C and with 1.0–5.0 % (w/v) NaCl. It contained iso-C, iso-C 3-OH, iso-C, C, iso-C G, iso-C 3-OH and Cω6 as predominant cellular fatty acids and menaquinone-6 (MK-6) as the major respiratory quinone. The polar lipids of strain SM1202 were phosphatidylethanolamine, one unidentified lipid, two unidentified aminophospholipids and one unidentified aminolipid. The genomic DNA G+C content of strain SM1202 was 36.4 mol%. On the basis of the data from this polyphasic taxonomic study, strain SM1202 represents a novel species in the genus of the family , for which the name sp. nov. is proposed. The type strain of is SM1202 ( = CCTCC AB 2013148 = KCTC 32516). An emended description of the genus is also presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.056788-0
2014-03-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/973.html?itemId=/content/journal/ijsem/10.1099/ijs.0.056788-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Bernardet J.-F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. Fukui Y., Abe M., Kobayashi M., Saito H., Oikawa H., Yano Y., Satomi M.. ( 2013;). Polaribacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species. . Int J Syst Evol Microbiol 63:, 1665–1672. [CrossRef][PubMed]
    [Google Scholar]
  8. Gosink J. J., Woese C. R., Staley J. T.. ( 1998;). Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov.. Int J Syst Bacteriol 48:, 223–235. [CrossRef][PubMed]
    [Google Scholar]
  9. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  10. Kim B.-C., Oh H. W., Kim H., Park D.-S., Hong S. G., Lee H. K., Bae K. S.. ( 2013;). Polaribacter sejongensis sp. nov., isolated from Antarctic soil, and emended descriptions of the genus Polaribacter, Polaribacter butkevichii and Polaribacter irgensii. . Int J Syst Evol Microbiol 63:, 4000–4005. [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  12. Komagata K., Suzuki K.. ( 1987;). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  13. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  14. Lee Y. S., Lee D.-H., Kahng H.-Y., Sohn S. H., Jung J. S.. ( 2011;). Polaribacter gangjinensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 61:, 1425–1429. [CrossRef][PubMed]
    [Google Scholar]
  15. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  16. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  17. McGuire A. J., Franzmann P. D., McMeekin T. A.. ( 1987;). Flectobacillus glomeratus sp. nov., a curved, nonmotile, pigmented bacterium isolated from Antarctic marine environments. . Syst Appl Microbiol 9:, 265–272. [CrossRef]
    [Google Scholar]
  18. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  19. Nedashkovskaya O. I., Kim S. B., Lysenko A. M., Kalinovskaya N. I., Mikhailov V. V., Kim I. S., Bae K. S.. ( 2005;). Polaribacter butkevichii sp. nov., a novel marine mesophilic bacterium of the family Flavobacteriaceae. . Curr Microbiol 51:, 408–412. [CrossRef][PubMed]
    [Google Scholar]
  20. Nedashkovskaya O. I., Kukhlevskiy A. D., Zhukova N. V.. ( 2013;). Polaribacter reichenbachii sp. nov.: a new marine bacterium associated with the green alga Ulva fenestrata. . Curr Microbiol 66:, 16–21. [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  24. Yoon J.-H., Kang S.-J., Oh T.-K.. ( 2006;). Polaribacter dokdonensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 56:, 1251–1255. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.056788-0
Loading
/content/journal/ijsem/10.1099/ijs.0.056788-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error