1887

Abstract

A thermophilic bacterium, designated DX-1, was isolated from the anode biofilm of a microbial fuel cell (MFC). Cells of strain DX-1 were oxidase-positive, catalase-positive and Gram-staining-negative. The strain was found to be rod-shaped and non-motile and to produce subterminal spores. The strain was able to grow with NaCl at concentrations ranging from 0 to 6 %, at temperatures of 25–60 °C (optimum 55 °C) and pH 6.0–8.0 (optimum pH 7.0). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain DX-1 formed a cluster with DSM 10633 (96.9 % 16S rRNA sequence similarity), DSM 17951 (95.8 %), DSM 17952 (95.7 %) and DSM 12654 (95.3 %). The G+C content of the genomic DNA was 40.4 mol%. The major quinone was MK-7, the peptidoglycan type was -Lys←-Asp, and the major cellular fatty acids (>5 %) were iso-C and iso-C. The polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol and phospholipids of unknown composition. Based on phenotypic characteristics, chemotaxonomic features and results of phylogenetic analyses, the strain was determined to represent a distinct novel species of the genus , and the name proposed for the novel species is sp. nov., with type strain DX-1 ( = CGMCC 1.12358 = KCTC 33127).

Funding
This study was supported by the:
  • , Guangdong Natural Science Foundation , (Award S2012030006114 and S2011030002882)
  • , Science and Technology Planning Project of Guangdong Province, China , (Award 2012B010500035 and 2012B030800008)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.056655-0
2014-05-01
2020-07-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1617.html?itemId=/content/journal/ijsem/10.1099/ijs.0.056655-0&mimeType=html&fmt=ahah

References

  1. Andersson M., Laukkanen M., Nurmiaho-Lassila E.-L., Rainey F. A., Niemela S. I., Salkinoja-Salonen M. ( 1995 ). Bacillus thermosphaericus sp. nov. a new thermophilic ureolytic: Bacillus isolated from air. . Syst Appl Microbiol 18, 203220. [CrossRef]
    [Google Scholar]
  2. Baker G. C., Smith J. J., Cowan D. A. ( 2003 ). Review and re-analysis of domain-specific 16S primers. . J Microbiol Methods 55, 541555. [CrossRef] [PubMed]
    [Google Scholar]
  3. Breznak J. A., Costilow R. N. ( 1994 ). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137154. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. ( 1977 ). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100, 221230. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dong X.-Z., Cai M.-Y. (editors) ( 2001 ). Determination of biochemical properties. . In Manual for the Systematic Identification of General Bacteria , pp. 370398. Beijing, China:: Science Press (in Chinese);.
    [Google Scholar]
  6. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [CrossRef] [PubMed]
    [Google Scholar]
  7. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [CrossRef]
    [Google Scholar]
  8. Fortina M. G., Pukall R., Schumann P., Mora D., Parini C., Manachini P. L., Stackebrandt E. ( 2001 ). Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson et al. 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov.. Int J Syst Evol Microbiol 51, 447455.[PubMed] [CrossRef]
    [Google Scholar]
  9. Kim B.-Y., Lee S.-Y., Weon H.-Y., Kwon S.-W., Go S.-J., Park Y.-K., Schumann P., Fritze D. ( 2006 ). Ureibacillus suwonensis sp. nov., isolated from cotton waste composts. . Int J Syst Evol Microbiol 56, 663666. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kimura M. ( 1980 ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16, 111120. [CrossRef] [PubMed]
    [Google Scholar]
  12. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. & other authors ( 2009 ). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59, 21142121. [CrossRef] [PubMed]
    [Google Scholar]
  13. McCarthy A. J., Cross T. ( 1984 ). A taxonomic study of Thermomonospora and other monosporic actinomycetes. . J Gen Microbiol 130, 525.
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [CrossRef]
    [Google Scholar]
  15. Minnikin D. E., Collins M. D., Goodfellow M. ( 1979 ). Fatty-acid and polar lipid-composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Microbiol 47, 8795.
    [Google Scholar]
  16. Rzhetsky A., Nei M. ( 1992 ). A simple method for estimating and testing minimum-evolution trees. . Mol Biol Evol 9, 945967.
    [Google Scholar]
  17. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  18. Sambrook J., Russell D. W. ( 2001 ). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  19. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI;.
    [Google Scholar]
  20. Stackebrandt E., Goebel B. M. ( 1994 ). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44, 846849. [CrossRef]
    [Google Scholar]
  21. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. ( 1983 ). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54, 3136. [CrossRef]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [CrossRef] [PubMed]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997 ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25, 48764882. [CrossRef] [PubMed]
    [Google Scholar]
  24. Weon H.-Y., Lee S.-Y., Kim B.-Y., Noh H.-J., Schumann P., Kim J.-S., Kwon S.-W. ( 2007 ). Ureibacillus composti sp. nov. and Ureibacillus thermophilus sp. nov., isolated from livestock-manure composts. . Int J Syst Evol Microbiol 57, 29082911. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.056655-0
Loading
/content/journal/ijsem/10.1099/ijs.0.056655-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error