1887

Abstract

Three slow-growing rhizobial strains, designated RITF806, RITF807 and RITF211, isolated from root nodules of grown in Ganzhou city, Jiangxi Province, China, had been previously defined, based on amplified 16S rRNA gene restriction analysis, as a novel group within the genus . To clarify their taxonomic position, these strains were further analysed and compared with reference strains of related bacteria using a polyphasic approach. According to 16S rRNA gene sequence analysis, the isolates formed a group that was closely related to ‘’ CTAW71, with a similarity value of 99.9 %. In phylogenetic analyses of the housekeeping and symbiotic gene sequences, the three strains formed a distinct lineage within the genus , which was consistent with the results of DNA–DNA hybridization. In analyses of cellular fatty acids and phenotypic features, some differences were found between the novel group and related species of the genus , indicating that these three strains constituted a novel group distinct from any recognized species of the genus . Based on the data obtained in this study, we conclude that our strains represent a novel species of the genus , for which the name sp. nov. is proposed, with RITF806 ( = CCBAU 101088 = JCM 19881) as the type strain. The DNA G+C content of strain RITF806 is 64.6 mol% ( ).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.056564-0
2014-06-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/1900.html?itemId=/content/journal/ijsem/10.1099/ijs.0.056564-0&mimeType=html&fmt=ahah

References

  1. Bradbury G. J. , Potts B. M. , Beadle C. L. . ( 2010; ). Quantifying phenotypic variation in wood colour in Acacia melanoxylon R.Br.. Forestry 83:, 153–162. [CrossRef]
    [Google Scholar]
  2. Chahboune R. , Carro L. , Peix A. , Barrijal S. , Velázquez E. , Bedmar E. J. . ( 2011; ). Bradyrhizobium cytisi sp. nov., isolated from effective nodules of Cytisus villosus . . Int J Syst Evol Microbiol 61:, 2922–2927. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chahboune R. , Carro L. , Peix A. , Ramírez-Bahena M. H. , Barrijal S. , Velázquez E. , Bedmar E. J. . ( 2012; ). Bradyrhizobium rifense sp. nov. isolated from effective nodules of Cytisus villosus grown in the Moroccan Rif. . Syst Appl Microbiol 35:, 302–305. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chang Y. L. , Wang J. Y. , Wang E. T. , Liu H. C. , Sui X. H. , Chen W. X. . ( 2011; ). Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea . . Int J Syst Evol Microbiol 61:, 2496–2502. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chen W. P. , Kuo T. T. . ( 1993; ). A simple and rapid method for the preparation of Gram-negative bacterial genomic DNA. . Nucleic Acids Res 21:, 2260. [CrossRef] [PubMed]
    [Google Scholar]
  6. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  7. Delamuta J. R. M. , Ribeiro R. A. , Ormeño-Orrillo E. , Melo I. S. , Martínez-Romero E. , Hungria M. . ( 2013; ). Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov.. Int J Syst Evol Microbiol 63:, 3342–3351. [CrossRef] [PubMed]
    [Google Scholar]
  8. DeLong E. F. . ( 1992; ). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dou Y. , Lu J. , Kang L. , Wang S. , Jiang Y. , Liao S. . ( 2012; ). [Biodiversity of Rhizobia associated with Acacia melanoxylon grown in South China]. . Wei Sheng Wu Xue Bao 52:, 1439–1448 (in Chinese with English abstract).[PubMed]
    [Google Scholar]
  10. Gao J. L. , Sun J. G. , Li Y. , Wang E. T. , Chen W. X. . ( 1994; ). Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. . Int J Syst Bacteriol 44:, 151–158. [CrossRef]
    [Google Scholar]
  11. Laguerre G. , Nour S. M. , Macheret V. , Sanjuan J. , Drouin P. , Amarger N. . ( 2001; ). Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. . Microbiology 147:, 981–993.[PubMed]
    [Google Scholar]
  12. Mandel M. , Marmur J. . ( 1968; ). Use of ultraviolet absorbance–temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12B:, 195–206. [CrossRef]
    [Google Scholar]
  13. Marmur J. . ( 1961; ). A procedure for the isolation of DNA from microorganisms. . J Mol Biol 3:, 208–218.[CrossRef]
    [Google Scholar]
  14. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  15. Rivas R. , Willems A. , Palomo J. L. , García-Benavides P. , Mateos P. F. , Martínez-Molina E. , Gillis M. , Velázquez E. . ( 2004; ). Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. . Int J Syst Evol Microbiol 54:, 1271–1275. [CrossRef] [PubMed]
    [Google Scholar]
  16. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  17. Searle S. D. . ( 2000; ). Acacia melanoxylon: a review of variation among planted trees. . Aust For 63:, 79–85. [CrossRef]
    [Google Scholar]
  18. Tighe S. W. , de Lajudie P. , Dipietro K. , Lindström K. , Nick G. , Jarvis B. D. W. . ( 2000; ). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef] [PubMed]
    [Google Scholar]
  19. Vincent J. M. . ( 1970; ). A Manual for the Practical Study of Root-Nodule Bacteria. Oxford:: Blackwell Scientific;.
    [Google Scholar]
  20. Vinuesa P. , León-Barrios M. , Silva C. , Willems A. , Jarabo-Lorenzo A. , Pérez-Galdona R. , Werner D. , Martínez-Romero E. . ( 2005; ). Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. . Int J Syst Evol Microbiol 55:, 569–575. [CrossRef] [PubMed]
    [Google Scholar]
  21. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  22. Yao Z. Y. , Kan F. L. , Wang E. T. , Wei G. H. , Chen W. X. . ( 2002; ). Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov.. Int J Syst Evol Microbiol 52:, 2219–2230. [CrossRef] [PubMed]
    [Google Scholar]
  23. Zhang Y. M. , Li Y. Jr , Chen W. F. , Wang E. T. , Sui X. H. , Li Q. Q. , Zhang Y. Z. , Zhou Y. G. , Chen W. X. . ( 2012; ). Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules. . Int J Syst Evol Microbiol 62:, 1951–1957. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.056564-0
Loading
/content/journal/ijsem/10.1099/ijs.0.056564-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error