1887

Abstract

A psychrotolerant hydrogenotrophic methanogen, strain Pt1, was isolated from a syntrophic propionate-oxidizing methanogenic consortium obtained from granulated biomass of a two-stage low-temperature (3–8 °C) anaerobic expanded granular sludge bed (EGSB) bioreactor, fed with a mixture of volatile fatty acids (VFAs) (acetate, propionate and butyrate). The strain was strictly anaerobic, and cells were curved rods, 0.4–0.5×7.5–25 µm, that sometimes formed wavy filaments from 25 to several hundred micrometres in length. Cells stained Gram-negative and were non-sporulating. They were gently motile by means of tufted flagella. The strain grew at 5–37 °C (optimum at 20–30 °C), at pH 6.0–10 (optimum 7.0–7.5) and with 0–0.3 M NaCl (optimum 0 M NaCl). Growth and methane production was found with H/CO and very weak growth with formate. Acetate and yeast extract stimulated growth, but were not essential. The G+C content of the DNA of strain Pt1 was 40 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Pt1 was a member of the genus and showed 97.5 % sequence similarity to JF1 and 94 % sequence similarity to Ki8-1. DNA–DNA hybridization of strain Pt1 with JF1 revealed 39 % relatedness. On the basis of its phenotypic characteristics and phylogenetic position, strain Pt1 is a representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Pt1 ( = DSM 26304 = VKM B-2808).

Funding
This study was supported by the:
  • Russian Foundation for Basic Research (RFBR) (Award 07-04-01522)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.056218-0
2014-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/180.html?itemId=/content/journal/ijsem/10.1099/ijs.0.056218-0&mimeType=html&fmt=ahah

References

  1. Birnboim H. C., Doly J. ( 1979 ). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. . Nucleic Acids Res 7, 15131523. [View Article] [PubMed]
    [Google Scholar]
  2. Boone D. R., Whitman W. B. ( 1988 ). Proposal of minimal standards for describing new taxa of methanogenic bacteria. . Int J Syst Bacteriol 38, 212219. [View Article]
    [Google Scholar]
  3. Cavicchioli R. ( 2006 ). Cold-adapted archaea. . Nat Rev Microbiol 4, 331343. [View Article] [PubMed]
    [Google Scholar]
  4. Chong S. C., Liu Y., Cummins M., Valentine D. L., Boone D. R. ( 2002 ). Methanogenium marinum sp. nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization. . Antonie van Leeuwenhoek 81, 263270. [View Article] [PubMed]
    [Google Scholar]
  5. D’Amico S., Collins T., Marx J.-C., Feller G., Gerday C. ( 2006 ). Psychrophilic microorganisms: challenges for life. . EMBO Rep 7, 385389. [View Article] [PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. ( 1970 ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12, 133142. [View Article] [PubMed]
    [Google Scholar]
  7. Edgar R. C. ( 2004a ). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32, 17921797. [View Article] [PubMed]
    [Google Scholar]
  8. Edgar R. C. ( 2004b ). muscle: a multiple sequence alignment method with reduced time and space complexity. . BMC Bioinformatics 5, 113. [View Article] [PubMed]
    [Google Scholar]
  9. Ferry J. G., Smith P. H., Wolfe R. S. ( 1974 ). Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatii sp. nov.. Int J Syst Bacteriol 24, 465469. [View Article]
    [Google Scholar]
  10. Franzmann P. D., Springer N., Ludwig W., Conway de Macario E., Rohde M. ( 1992 ). A methanogenic archaeon from Ace lake, Antarctica: Methanococcoides burtonii sp. nov.. Syst Appl Microbiol 15, 573581. [View Article]
    [Google Scholar]
  11. Franzmann P. D., Liu Y., Balkwill D. L., Aldrich H. C., Conway de Macario E., Boone D. R. ( 1997 ). Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. . Int J Syst Bacteriol 47, 10681072. [View Article] [PubMed]
    [Google Scholar]
  12. Friedrich M. W. ( 2005 ). Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. . Methods Enzymol 397, 428442. [View Article] [PubMed]
    [Google Scholar]
  13. Guindon S., Gascuel O. ( 2003 ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52, 696704. [View Article] [PubMed]
    [Google Scholar]
  14. Iino T., Mori K., Suzuki K. ( 2010 ). Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei . . Int J Syst Evol Microbiol 60, 25632566. [View Article] [PubMed]
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. ( 1969 ). Evolution of protein molecules. . In: Mammalian Protein Metabolism vol.3, 21132. Edited by Munro H. N. New York:: Academic Press;.
    [Google Scholar]
  16. Kendall M. M., Wardlaw G. D., Tang C. F., Bonin A. S., Liu Y., Valentine D. L. ( 2007 ). Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov.. Appl Environ Microbiol 73, 407414. [View Article] [PubMed]
    [Google Scholar]
  17. Kevbrin V. V., Zavarzin G. A. ( 1992 ). The effect of sulfur compounds on growth of halophilic homoacetic bacterium Acetohalobium arabaticum . . Microbiology (English translation of Mikrobiologiya) 61, 563567.
    [Google Scholar]
  18. Krivushin K. V., Shcherbakova V. A., Petrovskaya L. E., Rivkina E. M. ( 2010 ). Methanobacterium veterum sp. nov., from ancient Siberian permafrost. . Int J Syst Evol Microbiol 60, 455459. [View Article] [PubMed]
    [Google Scholar]
  19. Lane D. J. ( 1991 ). 16S/23S sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. . Chichester:: Wiley;.
    [Google Scholar]
  20. Lettinga G., Rebac S., Parshina S. N., Nozhevnikova A. N., van Lier J. B., Stams A. J. M. ( 1999 ). High-rate anaerobic treatment of wastewater at low temperatures. . Appl Environ Microbiol 65, 16961702.[PubMed]
    [Google Scholar]
  21. Lettinga G., Rebac S., Zeeman G. ( 2001 ). Challenge of psychrophilic anaerobic wastewater treatment. . Trends Biotechnol 19, 363370. [View Article] [PubMed]
    [Google Scholar]
  22. Luton P. E., Wayne J. M., Sharp R. J., Riley P. W. ( 2002 ). The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. . Microbiology 148, 35213530.[PubMed]
    [Google Scholar]
  23. Margesin R., Miteva V. ( 2011 ). Diversity and ecology of psychrophilic microorganisms. . Res Microbiol 162, 346361. [View Article] [PubMed]
    [Google Scholar]
  24. Marmur J. ( 1961 ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3, 208218. [View Article]
    [Google Scholar]
  25. Marmur J., Doty P. ( 1961 ). Thermal renaturation of deoxyribonucleic acids. . J Mol Biol 3, 585594. [View Article] [PubMed]
    [Google Scholar]
  26. McInerney M. J., Struchtemeyer C. G., Sieber J., Mouttaki H., Stams A. J. M., Schink B., Rohlin L., Gunsalus R. P. ( 2008 ). Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. . Ann N Y Acad Sci 1125, 5872. [View Article] [PubMed]
    [Google Scholar]
  27. McKeown R. M., Hughes D., Collins G., Mahony T., O’Flaherty V. ( 2012 ). Low-temperature anaerobic digestion for wastewater treatment. . Curr Opin Biotechnol 23, 444451. [View Article] [PubMed]
    [Google Scholar]
  28. Owen R. J., Hill L. R., Lapage S. P. ( 1969 ). Determination of DNA base compositions from melting profiles in dilute buffers. . Biopolymers 7, 503516. [View Article] [PubMed]
    [Google Scholar]
  29. Parshina S. N., Nozhevnikova A. N., Kalyuzhny S. V. ( 1993 ). Decomposition of protein substrates at low temperature by microflora of pig manure. . Microbiology (English translation of Mikrobiologiya) 62, 121129.
    [Google Scholar]
  30. Parshina S. N., Ermakova A. V., Shatilova K. A. ( 2011 ). Metabolic resistance of a psychrotolerant VFA-oxidizing microbial community from an anaerobic bioreactor to changes in the cultivation temperature. . Microbiology (English translation of Mikrobiologiya) 80, 5059. [View Article]
    [Google Scholar]
  31. Patel G. B., Roth L. A., van den Berg L., Clark D. S. ( 1976 ). Characterization of a strain of Methanospirillum hungatti . . Can J Microbiol 22, 14041410. [View Article] [PubMed]
    [Google Scholar]
  32. Pfennig N. ( 1965 ). Anreicherungskulturen fürote und grüne Schwefelbakterien. . Zentrbl. Bakteriol Parasitenkd Infektionskr Hyg Abt 1 (Suppl), 179189.
    [Google Scholar]
  33. Pfennig N., Lippert K. D. ( 1966 ). Über das Vitamin B12 Bedürfnis phototropher Schwefelbakterien. . Arch Microbiol 55, 245256.
    [Google Scholar]
  34. Rebac S., van Lier J. B., Janssen M. G. J., Dekkers F., Swinkels K. Th. M., Lettinga G. ( 1997 ). High-rate anaerobic treatment of malting waste water in a pilot-scale EGSB system under psychrophilic conditions. . J Chem Technol Biotechnol 68, 135146. [View Article]
    [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R. ( 1977 ). DNA sequencing with chain-terminating inhibitors. . Proc Natl Acad Sci U S A 74, 54635467. [View Article] [PubMed]
    [Google Scholar]
  36. Schink B. ( 1997 ). Energetics of syntrophic cooperation in methanogenic degradation. . Microbiol Mol Biol Rev 61, 262280.[PubMed]
    [Google Scholar]
  37. Simankova M. V., Parshina S. N., Tourova T. P., Kolganova T. V., Zehnder A. J. B., Nozhevnikova A. N. ( 2001 ). Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. . Syst Appl Microbiol 24, 362367. [View Article] [PubMed]
    [Google Scholar]
  38. Singh N., Kendall M. M., Liu Y., Boone D. R. ( 2005 ). Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica . . Int J Syst Evol Microbiol 55, 25312538. [View Article] [PubMed]
    [Google Scholar]
  39. Stams A. J. M. ( 1994 ). Metabolic interactions between anaerobic bacteria in methanogenic environments. . Antonie van Leeuwenhoek 66, 271294. [View Article] [PubMed]
    [Google Scholar]
  40. Stams A. J. M., Plugge C. M. ( 2009 ). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. . Nat Rev Microbiol 7, 568577. [View Article] [PubMed]
    [Google Scholar]
  41. Stams A. J. M., Sousa D. Z., Kleerebezem R., Plugge C. M. ( 2012 ). Role of syntrophic microbial communities in high-rate methanogenic bioreactors. . Water Sci Technol 66, 352362. [View Article] [PubMed]
    [Google Scholar]
  42. Steinberg L. M., Regan J. M. ( 2008 ). Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. . Appl Environ Microbiol 74, 66636671. [View Article] [PubMed]
    [Google Scholar]
  43. von Klein D., Arab H., Völker H., Thomm M. ( 2002 ). Methanosarcina baltica, sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. . Extremophiles 6, 103110. [View Article] [PubMed]
    [Google Scholar]
  44. Wagner D., Schirmack J., Ganzert L., Morozova D., Mangelsdorf K. ( 2013 ). Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. . Int J Syst Evol Microbiol 63, 29862991. [View Article] [PubMed]
    [Google Scholar]
  45. Whelan S., Goldman N. ( 2001 ). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. . Mol Biol Evol 18, 691699. [View Article] [PubMed]
    [Google Scholar]
  46. Wolin E. A., Wolin M. J., Wolfe R. S. ( 1963 ). Formation of methane by bacterial extracts. . J Biol Chem 238, 28822886.[PubMed]
    [Google Scholar]
  47. Zhang G., Jiang N., Liu X., Dong X. ( 2008 ). Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp. nov., prevalent in Zoige wetland of the Tibetan plateau. . Appl Environ Microbiol 74, 61146120. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.056218-0
Loading
/content/journal/ijsem/10.1099/ijs.0.056218-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error