1887

Abstract

A psychrotolerant hydrogenotrophic methanogen, strain Pt1, was isolated from a syntrophic propionate-oxidizing methanogenic consortium obtained from granulated biomass of a two-stage low-temperature (3–8 °C) anaerobic expanded granular sludge bed (EGSB) bioreactor, fed with a mixture of volatile fatty acids (VFAs) (acetate, propionate and butyrate). The strain was strictly anaerobic, and cells were curved rods, 0.4–0.5×7.5–25 µm, that sometimes formed wavy filaments from 25 to several hundred micrometres in length. Cells stained Gram-negative and were non-sporulating. They were gently motile by means of tufted flagella. The strain grew at 5–37 °C (optimum at 20–30 °C), at pH 6.0–10 (optimum 7.0–7.5) and with 0–0.3 M NaCl (optimum 0 M NaCl). Growth and methane production was found with H/CO and very weak growth with formate. Acetate and yeast extract stimulated growth, but were not essential. The G+C content of the DNA of strain Pt1 was 40 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Pt1 was a member of the genus and showed 97.5 % sequence similarity to JF1 and 94 % sequence similarity to Ki8-1. DNA–DNA hybridization of strain Pt1 with JF1 revealed 39 % relatedness. On the basis of its phenotypic characteristics and phylogenetic position, strain Pt1 is a representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Pt1 ( = DSM 26304 = VKM B-2808).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.056218-0
2014-01-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/180.html?itemId=/content/journal/ijsem/10.1099/ijs.0.056218-0&mimeType=html&fmt=ahah

References

  1. Birnboim H. C., Doly J.. ( 1979;). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. . Nucleic Acids Res 7:, 1513–1523. [CrossRef][PubMed]
    [Google Scholar]
  2. Boone D. R., Whitman W. B.. ( 1988;). Proposal of minimal standards for describing new taxa of methanogenic bacteria. . Int J Syst Bacteriol 38:, 212–219. [CrossRef]
    [Google Scholar]
  3. Cavicchioli R.. ( 2006;). Cold-adapted archaea. . Nat Rev Microbiol 4:, 331–343. [CrossRef][PubMed]
    [Google Scholar]
  4. Chong S. C., Liu Y., Cummins M., Valentine D. L., Boone D. R.. ( 2002;). Methanogenium marinum sp. nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization. . Antonie van Leeuwenhoek 81:, 263–270. [CrossRef][PubMed]
    [Google Scholar]
  5. D’Amico S., Collins T., Marx J.-C., Feller G., Gerday C.. ( 2006;). Psychrophilic microorganisms: challenges for life. . EMBO Rep 7:, 385–389. [CrossRef][PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  7. Edgar R. C.. ( 2004a;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  8. Edgar R. C.. ( 2004b;). muscle: a multiple sequence alignment method with reduced time and space complexity. . BMC Bioinformatics 5:, 113. [CrossRef][PubMed]
    [Google Scholar]
  9. Ferry J. G., Smith P. H., Wolfe R. S.. ( 1974;). Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatii sp. nov.. Int J Syst Bacteriol 24:, 465–469. [CrossRef]
    [Google Scholar]
  10. Franzmann P. D., Springer N., Ludwig W., Conway de Macario E., Rohde M.. ( 1992;). A methanogenic archaeon from Ace lake, Antarctica: Methanococcoides burtonii sp. nov.. Syst Appl Microbiol 15:, 573–581. [CrossRef]
    [Google Scholar]
  11. Franzmann P. D., Liu Y., Balkwill D. L., Aldrich H. C., Conway de Macario E., Boone D. R.. ( 1997;). Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. . Int J Syst Bacteriol 47:, 1068–1072. [CrossRef][PubMed]
    [Google Scholar]
  12. Friedrich M. W.. ( 2005;). Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea.. Methods Enzymol 397:, 428–442. [CrossRef][PubMed]
    [Google Scholar]
  13. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef][PubMed]
    [Google Scholar]
  14. Iino T., Mori K., Suzuki K.. ( 2010;). Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. . Int J Syst Evol Microbiol 60:, 2563–2566. [CrossRef][PubMed]
    [Google Scholar]
  15. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In: Mammalian Protein Metabolism vol.3, 21–132. Edited by Munro H. N.. New York:: Academic Press;.
    [Google Scholar]
  16. Kendall M. M., Wardlaw G. D., Tang C. F., Bonin A. S., Liu Y., Valentine D. L.. ( 2007;). Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov.. Appl Environ Microbiol 73:, 407–414. [CrossRef][PubMed]
    [Google Scholar]
  17. Kevbrin V. V., Zavarzin G. A.. ( 1992;). The effect of sulfur compounds on growth of halophilic homoacetic bacterium Acetohalobium arabaticum. . Microbiology (English translation of Mikrobiologiya) 61:, 563–567.
    [Google Scholar]
  18. Krivushin K. V., Shcherbakova V. A., Petrovskaya L. E., Rivkina E. M.. ( 2010;). Methanobacterium veterum sp. nov., from ancient Siberian permafrost. . Int J Syst Evol Microbiol 60:, 455–459. [CrossRef][PubMed]
    [Google Scholar]
  19. Lane D. J.. ( 1991;). 16S/23S sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  20. Lettinga G., Rebac S., Parshina S. N., Nozhevnikova A. N., van Lier J. B., Stams A. J. M.. ( 1999;). High-rate anaerobic treatment of wastewater at low temperatures. . Appl Environ Microbiol 65:, 1696–1702.[PubMed]
    [Google Scholar]
  21. Lettinga G., Rebac S., Zeeman G.. ( 2001;). Challenge of psychrophilic anaerobic wastewater treatment. . Trends Biotechnol 19:, 363–370. [CrossRef][PubMed]
    [Google Scholar]
  22. Luton P. E., Wayne J. M., Sharp R. J., Riley P. W.. ( 2002;). The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. . Microbiology 148:, 3521–3530.[PubMed]
    [Google Scholar]
  23. Margesin R., Miteva V.. ( 2011;). Diversity and ecology of psychrophilic microorganisms. . Res Microbiol 162:, 346–361. [CrossRef][PubMed]
    [Google Scholar]
  24. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  25. Marmur J., Doty P.. ( 1961;). Thermal renaturation of deoxyribonucleic acids. . J Mol Biol 3:, 585–594. [CrossRef][PubMed]
    [Google Scholar]
  26. McInerney M. J., Struchtemeyer C. G., Sieber J., Mouttaki H., Stams A. J. M., Schink B., Rohlin L., Gunsalus R. P.. ( 2008;). Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. . Ann N Y Acad Sci 1125:, 58–72. [CrossRef][PubMed]
    [Google Scholar]
  27. McKeown R. M., Hughes D., Collins G., Mahony T., O’Flaherty V.. ( 2012;). Low-temperature anaerobic digestion for wastewater treatment. . Curr Opin Biotechnol 23:, 444–451. [CrossRef][PubMed]
    [Google Scholar]
  28. Owen R. J., Hill L. R., Lapage S. P.. ( 1969;). Determination of DNA base compositions from melting profiles in dilute buffers. . Biopolymers 7:, 503–516. [CrossRef][PubMed]
    [Google Scholar]
  29. Parshina S. N., Nozhevnikova A. N., Kalyuzhny S. V.. ( 1993;). Decomposition of protein substrates at low temperature by microflora of pig manure. . Microbiology (English translation of Mikrobiologiya) 62:, 121–129.
    [Google Scholar]
  30. Parshina S. N., Ermakova A. V., Shatilova K. A.. ( 2011;). Metabolic resistance of a psychrotolerant VFA-oxidizing microbial community from an anaerobic bioreactor to changes in the cultivation temperature. . Microbiology (English translation of Mikrobiologiya) 80:, 50–59. [CrossRef]
    [Google Scholar]
  31. Patel G. B., Roth L. A., van den Berg L., Clark D. S.. ( 1976;). Characterization of a strain of Methanospirillum hungatti. . Can J Microbiol 22:, 1404–1410. [CrossRef][PubMed]
    [Google Scholar]
  32. Pfennig N.. ( 1965;). Anreicherungskulturen fürote und grüne Schwefelbakterien. . Zentrbl. Bakteriol Parasitenkd Infektionskr Hyg Abt 1: (Suppl), 179–189.
    [Google Scholar]
  33. Pfennig N., Lippert K. D.. ( 1966;). Über das Vitamin B12 Bedürfnis phototropher Schwefelbakterien. . Arch Microbiol 55:, 245–256.
    [Google Scholar]
  34. Rebac S., van Lier J. B., Janssen M. G. J., Dekkers F., Swinkels K. Th. M., Lettinga G.. ( 1997;). High-rate anaerobic treatment of malting waste water in a pilot-scale EGSB system under psychrophilic conditions. . J Chem Technol Biotechnol 68:, 135–146. [CrossRef]
    [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R.. ( 1977;). DNA sequencing with chain-terminating inhibitors. . Proc Natl Acad Sci U S A 74:, 5463–5467. [CrossRef][PubMed]
    [Google Scholar]
  36. Schink B.. ( 1997;). Energetics of syntrophic cooperation in methanogenic degradation. . Microbiol Mol Biol Rev 61:, 262–280.[PubMed]
    [Google Scholar]
  37. Simankova M. V., Parshina S. N., Tourova T. P., Kolganova T. V., Zehnder A. J. B., Nozhevnikova A. N.. ( 2001;). Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. . Syst Appl Microbiol 24:, 362–367. [CrossRef][PubMed]
    [Google Scholar]
  38. Singh N., Kendall M. M., Liu Y., Boone D. R.. ( 2005;). Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. . Int J Syst Evol Microbiol 55:, 2531–2538. [CrossRef][PubMed]
    [Google Scholar]
  39. Stams A. J. M.. ( 1994;). Metabolic interactions between anaerobic bacteria in methanogenic environments. . Antonie van Leeuwenhoek 66:, 271–294. [CrossRef][PubMed]
    [Google Scholar]
  40. Stams A. J. M., Plugge C. M.. ( 2009;). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. . Nat Rev Microbiol 7:, 568–577. [CrossRef][PubMed]
    [Google Scholar]
  41. Stams A. J. M., Sousa D. Z., Kleerebezem R., Plugge C. M.. ( 2012;). Role of syntrophic microbial communities in high-rate methanogenic bioreactors. . Water Sci Technol 66:, 352–362. [CrossRef][PubMed]
    [Google Scholar]
  42. Steinberg L. M., Regan J. M.. ( 2008;). Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. . Appl Environ Microbiol 74:, 6663–6671. [CrossRef][PubMed]
    [Google Scholar]
  43. von Klein D., Arab H., Völker H., Thomm M.. ( 2002;). Methanosarcina baltica, sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. . Extremophiles 6:, 103–110. [CrossRef][PubMed]
    [Google Scholar]
  44. Wagner D., Schirmack J., Ganzert L., Morozova D., Mangelsdorf K.. ( 2013;). Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. . Int J Syst Evol Microbiol 63:, 2986–2991. [CrossRef][PubMed]
    [Google Scholar]
  45. Whelan S., Goldman N.. ( 2001;). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. . Mol Biol Evol 18:, 691–699. [CrossRef][PubMed]
    [Google Scholar]
  46. Wolin E. A., Wolin M. J., Wolfe R. S.. ( 1963;). Formation of methane by bacterial extracts. . J Biol Chem 238:, 2882–2886.[PubMed]
    [Google Scholar]
  47. Zhang G., Jiang N., Liu X., Dong X.. ( 2008;). Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp. nov., prevalent in Zoige wetland of the Tibetan plateau. . Appl Environ Microbiol 74:, 6114–6120. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.056218-0
Loading
/content/journal/ijsem/10.1099/ijs.0.056218-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error