1887

Abstract

A novel facultatively anaerobic bacterium, designated strain LAM0618, was isolated from biogas slurry samples collected from the large-scale anaerobic digester of Modern Farming Corporation in Hebei Province, China. Cells of strain LAM0618 were Gram-stain-positive, motile, non-spore-forming and short-rod-shaped. The optimal temperature and pH for growth were 30 °C and 7.0, respectively. The strain did not require NaCl for growth but tolerated up to 70 g NaCl l. The major fatty acids of strain LAM0618 were iso-C, anteiso-C, iso-C, C and C. The predominant menaquinones of strain LAM0618 were menaquinone 7 (MK-7) and menaquinone 6 (MK-6). The main polar lipids of strain LAM0618 were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and six unknown glycolipids. The genomic DNA G+C content was 41 mol% as determined by the method. Analysis of the 16S rRNA gene sequence revealed that strain LAM0618 was a member of the genus , and was most closely related to ‘ ’ DSM 24639, DSM 20580, DSM 20636 and DSM 4747, with 96.9, 95.7, 95.6 and 94.9 % sequence similarity, respectively. Based on its phenotypic and genotypic properties, strain LAM0618 is suggested to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LAM0618 ( = ACCC 06121 = JCM 19187).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.056044-0
2014-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/518.html?itemId=/content/journal/ijsem/10.1099/ijs.0.056044-0&mimeType=html&fmt=ahah

References

  1. Belikova V. A., Cherevach N. V., Kalakutskiľ L. V.. ( 1986;). [New species of bacteria in the genus Kurthia–Kurthia sibirica sp. nov.]. . Mikrobiologiia 55:, 831–835 (in Russian).[PubMed]
    [Google Scholar]
  2. Breed R. S., Murray E. G. D., Smith N. R.. (editors) ( 1957;). Bergey’s Manual of Determinative Bacteriology, , 7th edn.. Baltimore, MD:: Williams and Wilkins;.
    [Google Scholar]
  3. Cowan S. T., Steel K. J.. ( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  4. Fang M.-X., Zhang W.-W., Zhang Y.-Z., Tan H.-Q., Zhang X.-Q., Wu M., Zhu X.-F.. ( 2012;). Brassicibacter mesophilus gen. nov., sp. nov., a strictly anaerobic bacterium isolated from food industry wastewater. . Int J Syst Evol Microbiol 62:, 3018–3023. [CrossRef][PubMed]
    [Google Scholar]
  5. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  6. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., Yi H., Won S., Chun J.. ( 2012;). Introducing EzTaxon‐e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  7. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  8. Kurth H.. ( 1883;). Ueber Bacterium zopfii, eine neue Bakterienart. . Berichte der Deutschen Botanischen Gesellschaft 1:, 97–100.
    [Google Scholar]
  9. Lányi B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  10. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  11. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  12. Minnikin D. E., Odonnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  13. Pukall R., Stackebrandt E.. ( 2009;). Genus V. Kurthia Trevisan 1885, 92AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 3, pp. 364–370. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  14. Roux V., El Karkouri K., Lagier J. C., Robert C., Raoult D.. ( 2012;). Non-contiguous finished genome sequence and description of Kurthia massiliensis sp. nov.. Stand Genomic Sci 7:, 221–232. [CrossRef][PubMed]
    [Google Scholar]
  15. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  16. Shaw S., Keddie R. M.. ( 1983;). A numerical taxonomic study of the genus Kurthia with a revised description of Kurthia zopfii and a description of Kurthia gibsonii sp. nov.. Syst Appl Microbiol 4:, 253–276. [CrossRef][PubMed]
    [Google Scholar]
  17. Shirling E. B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  18. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  20. Tindall B. J.. ( 1990;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  21. Trevisan, V. (1885). Carratteri di alcuni nuovi generi di Batteriacee. Atti della Accademia Fisica-Medica-Stastistica in Milano (Series 4) 3, 92–107.
  22. Xu X.-W., Huo Y.-Y., Wang C.-S., Oren A., Cui H.-L., Vedler E., Wu M.. ( 2011;). Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae. . Int J Syst Evol Microbiol 61:, 1817–1822. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.056044-0
Loading
/content/journal/ijsem/10.1099/ijs.0.056044-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error