1887

Abstract

A Gram-staining-positive, aerobic, motile, endospore-forming, rod-shaped bacterium, designated GD04, was isolated from a saline soil sample taken in southern China and was characterized by means of a polyphasic approach. Growth occurred with 0.5–12 % (w/v) NaCl (optimum 1–2 %) and at pH 7.0–9.5 (optimum pH 8.0) and 10–45 °C (optimum 30 °C). According to the results of a phylogenetic analysis, strain GD04 belonged to the genus , and was related most closely to type strains of the species and (96.5 and 96.5 % 16S rRNA gene sequence similarities, respectively). The peptidoglycan amino acid type was A4β, containing -ornithine and -aspartic acid. The major respiratory quinone was menaquinone-7 (MK-7). The polar lipid profile of strain GD04 contained predominantly diphosphatidylglycerol with moderate amounts of phosphatidylglycerol, phosphatidylinositol, an unknown phospholipid and an unknown lipid, and a minor amount of another unknown lipid. The G+C content of genomic DNA was 39.3 mol%. The dominant cellular fatty acids were iso-C, iso-C and anteiso-C. The phenotypic, chemotaxonomic, phylogenetic and genotypic data indicated that strain GD04 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GD04 ( = KCTC 33116 = CGMCC 1.12408).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055921-0
2014-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1685.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055921-0&mimeType=html&fmt=ahah

References

  1. Bagheri M. , Amoozegar M. A. , Schumann P. , Didari M. , Mehrshad M. , Spröer C. , Sánchez-Porro C. , Ventosa A. . ( 2013; ). Ornithinibacillus halophilus sp. nov., a moderately halophilic, Gram-stain-positive, endospore-forming bacterium from a hypersaline lake. . Int J Syst Evol Microbiol 63:, 844–848. [CrossRef] [PubMed]
    [Google Scholar]
  2. Collins M. D. , Pirouz T. , Goodfellow M. , Minnikin D. E. . ( 1977; ). Distribution of menaquinones in actinomycetes and corynebacteria . . J Gen Microbiol 100:, 221–230. [CrossRef] [PubMed]
    [Google Scholar]
  3. Felsenstein J. . ( 1985; ). Confidence-limits on phylogenies - an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  4. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Biol 20:, 406–416. [CrossRef]
    [Google Scholar]
  5. Hugh R. , Leifson E. . ( 1953; ). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. . J Bacteriol 66:, 24–26.[PubMed]
    [Google Scholar]
  6. Kämpfer P. , Falsen E. , Lodders N. , Langer S. , Busse H. J. , Schumann P. . ( 2010; ). Ornithinibacillus contaminans sp. nov., an endospore-forming species. . Int J Syst Evol Microbiol 60:, 2930–2934. [CrossRef] [PubMed]
    [Google Scholar]
  7. Kim O.-S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y. S. , Lee J.-H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  8. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  9. Logan N. A. , Berge O. , Bishop A. H. , Busse H. J. , De Vos P. , Fritze D. , Heyndrickx M. , Kämpfer P. , Rabinovitch L. . & other authors ( 2009; ). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef] [PubMed]
    [Google Scholar]
  10. Mayr R. , Busse H. J. , Worliczek H. L. , Ehling-Schulz M. , Scherer S. . ( 2006; ). Ornithinibacillus gen. nov., with the species Ornithinibacillus bavariensis sp. nov. and Ornithinibacillus californiensis sp. nov.. Int J Syst Evol Microbiol 56:, 1383–1389. [CrossRef] [PubMed]
    [Google Scholar]
  11. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic-acid by high-performance liquid-chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  12. Minnikin D. E. , Odonnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  13. Murray R. G. E. , Doetsch R. N. , Robinow C. F. . ( 1994; ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  14. Rzhetsky A. , Nei M. . ( 1993; ). Theoretical foundation of the minimum-evolution method of phylogenetic inference. . Mol Biol Evol 10:, 1073–1095.[PubMed]
    [Google Scholar]
  15. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  16. Schumann P. . ( 2011; ). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  17. Shin N.-R. , Whon T. W. , Kim M.-S. , Roh S. W. , Jung M.-J. , Kim Y.-O. , Bae J.-W. . ( 2012; ). Ornithinibacillus scapharcae sp. nov., isolated from a dead ark clam. . Antonie van Leeuwenhoek 101:, 147–154. [CrossRef] [PubMed]
    [Google Scholar]
  18. Shirling E. B. , Gottlieb D. . ( 1966; ). Methods for characterization of streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  19. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  20. Suzuki M. , Nakagawa Y. , Harayama S. , Yamamoto S. . ( 2001; ). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov with Tenacibaculum maritimum comb. nov and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. . Int J Syst Evol Microbiol 51:, 1639–1652.[CrossRef]
    [Google Scholar]
  21. Tamaoka J. , Katayama-Fujimura Y. , Kuraishi H. . ( 1983; ). Analysis of bacterial menaquinone mixtures by high-performance liquid-chromatography. . J Appl Bacteriol 54:, 31–36. [CrossRef]
    [Google Scholar]
  22. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  23. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.055921-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055921-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error