1887

Abstract

A Gram-staining-positive, aerobic, motile, endospore-forming, rod-shaped bacterium, designated GD04, was isolated from a saline soil sample taken in southern China and was characterized by means of a polyphasic approach. Growth occurred with 0.5–12 % (w/v) NaCl (optimum 1–2 %) and at pH 7.0–9.5 (optimum pH 8.0) and 10–45 °C (optimum 30 °C). According to the results of a phylogenetic analysis, strain GD04 belonged to the genus , and was related most closely to type strains of the species and (96.5 and 96.5 % 16S rRNA gene sequence similarities, respectively). The peptidoglycan amino acid type was A4β, containing -ornithine and -aspartic acid. The major respiratory quinone was menaquinone-7 (MK-7). The polar lipid profile of strain GD04 contained predominantly diphosphatidylglycerol with moderate amounts of phosphatidylglycerol, phosphatidylinositol, an unknown phospholipid and an unknown lipid, and a minor amount of another unknown lipid. The G+C content of genomic DNA was 39.3 mol%. The dominant cellular fatty acids were iso-C, iso-C and anteiso-C. The phenotypic, chemotaxonomic, phylogenetic and genotypic data indicated that strain GD04 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GD04 ( = KCTC 33116 = CGMCC 1.12408).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 41201227)
  • Team Project of Guangdong Natural Science Foundation (Award S2012030006144 and S2011030002882)
  • China Postdoctoral Science Foundation Grant (Award 2013M531828)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055921-0
2014-05-01
2024-11-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1685.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055921-0&mimeType=html&fmt=ahah

References

  1. Bagheri M., Amoozegar M. A., Schumann P., Didari M., Mehrshad M., Spröer C., Sánchez-Porro C., Ventosa A. ( 2013 ). Ornithinibacillus halophilus sp. nov., a moderately halophilic, Gram-stain-positive, endospore-forming bacterium from a hypersaline lake. . Int J Syst Evol Microbiol 63, 844848. [View Article] [PubMed]
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. ( 1977 ). Distribution of menaquinones in actinomycetes and corynebacteria . . J Gen Microbiol 100, 221230. [View Article] [PubMed]
    [Google Scholar]
  3. Felsenstein J. ( 1985 ). Confidence-limits on phylogenies - an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  4. Fitch W. M. ( 1971 ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Biol 20, 406416. [View Article]
    [Google Scholar]
  5. Hugh R., Leifson E. ( 1953 ). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. . J Bacteriol 66, 2426.[PubMed]
    [Google Scholar]
  6. Kämpfer P., Falsen E., Lodders N., Langer S., Busse H. J., Schumann P. ( 2010 ). Ornithinibacillus contaminans sp. nov., an endospore-forming species. . Int J Syst Evol Microbiol 60, 29302934. [View Article] [PubMed]
    [Google Scholar]
  7. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  8. Kimura M. ( 1980 ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16, 111120. [View Article] [PubMed]
    [Google Scholar]
  9. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. & other authors ( 2009 ). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59, 21142121. [View Article] [PubMed]
    [Google Scholar]
  10. Mayr R., Busse H. J., Worliczek H. L., Ehling-Schulz M., Scherer S. ( 2006 ). Ornithinibacillus gen. nov., with the species Ornithinibacillus bavariensis sp. nov. and Ornithinibacillus californiensis sp. nov.. Int J Syst Evol Microbiol 56, 13831389. [View Article] [PubMed]
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic-acid by high-performance liquid-chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  12. Minnikin D. E., Odonnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [View Article]
    [Google Scholar]
  13. Murray R. G. E., Doetsch R. N., Robinow C. F. ( 1994 ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 2141. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  14. Rzhetsky A., Nei M. ( 1993 ). Theoretical foundation of the minimum-evolution method of phylogenetic inference. . Mol Biol Evol 10, 10731095.[PubMed]
    [Google Scholar]
  15. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  16. Schumann P. ( 2011 ). Peptidoglycan structure. . Methods Microbiol 38, 101129. [View Article]
    [Google Scholar]
  17. Shin N.-R., Whon T. W., Kim M.-S., Roh S. W., Jung M.-J., Kim Y.-O., Bae J.-W. ( 2012 ). Ornithinibacillus scapharcae sp. nov., isolated from a dead ark clam. . Antonie van Leeuwenhoek 101, 147154. [View Article] [PubMed]
    [Google Scholar]
  18. Shirling E. B., Gottlieb D. ( 1966 ). Methods for characterization of streptomyces species. . Int J Syst Bacteriol 16, 313340. [View Article]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  20. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S. ( 2001 ). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov with Tenacibaculum maritimum comb. nov and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. . Int J Syst Evol Microbiol 51, 16391652. [CrossRef]
    [Google Scholar]
  21. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. ( 1983 ). Analysis of bacterial menaquinone mixtures by high-performance liquid-chromatography. . J Appl Bacteriol 54, 3136. [View Article]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  23. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. ( 1991 ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173, 697703.[PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.055921-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055921-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error