1887

Abstract

A thermophilic, filamentous, heterotrophic bacterium, designated strain JAD2, a member of an as-yet uncultivated lineage that is present and sometimes abundant in some hot springs worldwide, was isolated from sediment of Great Boiling Spring in Nevada, USA. Cells had a mean diameter of 0.3 µm and length of 4.0 µm, and formed filaments that typically ranged in length from 20 to 200 µm. Filaments were negative for the Gram stain reaction, spores were not formed and motility was not observed. The optimum temperature for growth was 72.5–75 °C, with a range of 67.5–75 °C, and the optimum pH for growth was 6.75, with a range of pH 6.5–7.75. Peptone, tryptone or yeast extract were able to support growth when supplemented with vitamins, but no growth was observed using a variety of defined organic substrates. Strain JAD2 was microaerophilic and facultatively anaerobic, with optimal growth at 1 % (v/v) O and an upper limit of 8 % O. The major cellular fatty acids (>5 %) were C, C, C, C and C. The genomic DNA G+C content was 69.3 mol%. Phylogenetic and phylogenomic analyses using sequences of the 16S rRNA gene and other conserved genes placed JAD2 within the phylum , but not within any existing class in this phylum. These results indicate that strain JAD2 is the first cultivated representative of a novel lineage within the phylum , for which we propose the name gen. nov., sp. nov., within classis nov., ord. nov. and fam. nov. The type strain of is JAD2 ( = JCM 19131 = CCTCC AB-2014030).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055855-0
2014-06-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/2119.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055855-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S.. ( 1979;). Methanogens: reevaluation of a unique biological group. . Microbiol Rev 43:, 260–296.[PubMed]
    [Google Scholar]
  2. Cavaletti L., Monciardini P., Bamonte R., Schumann P., Rohde M., Sosio M., Donadio S.. ( 2006;). New lineage of filamentous, spore-forming, gram-positive bacteria from soil. . Appl Environ Microbiol 72:, 4360–4369. [CrossRef][PubMed]
    [Google Scholar]
  3. Cavalier-Smith T.. ( 2010;). Deep phylogeny, ancestral groups and the four ages of life. . Philos Trans R Soc Lond B Biol Sci 365:, 111–132. [CrossRef][PubMed]
    [Google Scholar]
  4. Cole J. K., Peacock J. P., Dodsworth J. A., Williams A. J., Thompson D. B., Dong H., Wu G., Hedlund B. P.. ( 2013a;). Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. . ISME J 7:, 718–729. [CrossRef][PubMed]
    [Google Scholar]
  5. Cole J. K., Gieler B. A., Heisler D. L., Palisoc M. M., Williams A. J., Dohnalkova A. C., Ming H., Yu T. T., Dodsworth J. A.. & other authors ( 2013b;). Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia. . Int J Syst Evol Microbiol 63:, 4675–4682. [CrossRef][PubMed]
    [Google Scholar]
  6. Costa K. C., Navarro J. B., Shock E. L., Zhang C. L., Soukup D., Hedlund B. P.. ( 2009;). Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. . Extremophiles 13:, 447–459. [CrossRef][PubMed]
    [Google Scholar]
  7. Dodsworth J. A., Hungate B. A., Hedlund B. P.. ( 2011;). Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea. . Environ Microbiol 13:, 2371–2386. [CrossRef][PubMed]
    [Google Scholar]
  8. Dodsworth J. A., McDonald A. I., Hedlund B. P.. ( 2012;). Calculation of total free energy yield as an alternative approach for predicting the importance of potential chemolithotrophic reactions in geothermal springs. . FEMS Microbiol Ecol 81:, 446–454. [CrossRef][PubMed]
    [Google Scholar]
  9. Engel A. S., Johnson L. R., Porter M. L.. ( 2013;). Arsenite oxidase gene diversity among Chloroflexi and Proteobacteria from El Tatio Geyser Field, Chile. . FEMS Microbiol Ecol 83:, 745–756. [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J.. ( 2005;). phylip (Phylogeny Inference Package), version 3.6. Distributed by the author. . Department of Genome Sciences, University of Washington;, Seattle, USA:.
  11. Garrity G. M., Holt J. G.. ( 2001;). Phylum BVI. Chloroflexi phy. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 427–446. Edited by Boone D. R., Castenholz R. W., Garrity G... New York:: Springer;. [CrossRef]
    [Google Scholar]
  12. Gupta R. S., Chander P., George S.. ( 2013;). Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexia class. nov. [corrected] into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. nov.. Antonie van Leeuwenhoek 103:, 99–119. [CrossRef][PubMed]
    [Google Scholar]
  13. Hanada S., Pierson B.. ( 2006;). The family Chloroflexaceae. . In The Prokaryotes, , 3rd edn., vol. 7, pp. 815–842. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  14. Hanada S., Hiraishi A., Shimada K., Matsuura K.. ( 1995;). Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. . Int J Syst Bacteriol 45:, 676–681. [CrossRef][PubMed]
    [Google Scholar]
  15. Hedlund B. P., McDonald A. I., Lam J., Dodsworth J. A., Brown J. R., Hungate B. A.. ( 2011;). Potential role of Thermus thermophilus and T. oshimai in high rates of nitrous oxide (N2O) production in ~80 °C hot springs in the US Great Basin. . Geobiology 9:, 471–480. [CrossRef][PubMed]
    [Google Scholar]
  16. Hou W., Wang S., Dong H., Jiang H., Briggs B. R., Peacock J. P., Huang Q., Huang L., Wu G.. & other authors ( 2013;). A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. . PLoS ONE 8:, e53350. [CrossRef][PubMed]
    [Google Scholar]
  17. Hugenholtz P., Stackebrandt E.. ( 2004;). Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). . Int J Syst Evol Microbiol 54:, 2049–2051. [CrossRef][PubMed]
    [Google Scholar]
  18. Hugenholtz P., Goebel B. M., Pace N. R.. ( 1998;). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. . J Bacteriol 180:, 4765–4774.[PubMed]
    [Google Scholar]
  19. Huson D. H., Richter D. C., Rausch C., Dezulian T., Franz M., Rupp R.. ( 2007;). Dendroscope: an interactive viewer for large phylogenetic trees. . BMC Bioinformatics 8:, 460. [CrossRef][PubMed]
    [Google Scholar]
  20. Jackson T. J., Ramaley R. F., Meinschein W. G.. ( 1973;). Thermomicrobium, a new genus of extremely thermophilic bacteria. . Int J Syst Bacteriol 23:, 28–36. [CrossRef]
    [Google Scholar]
  21. Kawaichi S., Ito N., Kamikawa R., Sugawara T., Yoshida T., Sako Y.. ( 2013;). Ardenticatena maritima gen. nov., sp. nov., a ferric iron- and nitrate-reducing bacterium of the phylum ‘Chloroflexi’ isolated from an iron-rich coastal hydrothermal field, and description of Ardenticatenia classis nov.. Int J Syst Evol Microbiol 63:, 2992–3002. [CrossRef][PubMed]
    [Google Scholar]
  22. Lasher C., Dyszynski G., Everett K., Edmonds J., Ye W., Sheldon W., Wang S., Joye S. B., Moran M. A., Whitman W. B.. ( 2009;). The diverse bacterial community in intertidal, anaerobic sediments at Sapelo Island, Georgia. . Microb Ecol 58:, 244–261. [CrossRef][PubMed]
    [Google Scholar]
  23. Leboffe M. J., Pierce B. E.. ( 2006;). Microbiology: Laboratory Theory and Application, , 2nd edn.. Englewood, CO:: Morton;.
    [Google Scholar]
  24. Lee P. K. H., He J., Zinder S. H., Alvarez-Cohen L.. ( 2009;). Evidence for nitrogen fixation by “Dehalococcoides ethenogenes” strain 195. . Appl Environ Microbiol 75:, 7551–7555. [CrossRef][PubMed]
    [Google Scholar]
  25. Letunic I., Bork P.. ( 2011;). Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. . Nucleic Acids Res 39: (Suppl.), W475–W478. [CrossRef][PubMed]
    [Google Scholar]
  26. Löffler F. E., Yan J., Ritalahti K. M., Adrian L., Edwards E. A., Konstantinidis K. T., Müller J. A., Fullerton H., Zinder S. H., Spormann A. M.. ( 2013;). Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. . Int J Syst Evol Microbiol 63:, 625–635. [CrossRef][PubMed]
    [Google Scholar]
  27. McDonald D., Price M. N., Goodrich J., Nawrocki E. P., DeSantis T. Z., Probst A., Andersen G. L., Knight R., Hugenholtz P.. ( 2012;). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. . ISME J 6:, 610–618. [CrossRef][PubMed]
    [Google Scholar]
  28. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  29. Moe W. M., Yan J., Nobre M. F., da Costa M. S., Rainey F. A.. ( 2009;). Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. . Int J Syst Evol Microbiol 59:, 2692–2697. [CrossRef][PubMed]
    [Google Scholar]
  30. Pierson B. K., Castenholz R. W.. ( 1974;). A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov.. Arch Microbiol 100:, 5–24. [CrossRef][PubMed]
    [Google Scholar]
  31. Pond J. L., Langworthy T. A.. ( 1987;). Effect of growth temperature on the long-chain diols and fatty acids of Thermomicrobium roseum. . J Bacteriol 169:, 1328–1330.[PubMed]
    [Google Scholar]
  32. Rappé M. S., Giovannoni S. J.. ( 2003;). The uncultured microbial majority. . Annu Rev Microbiol 57:, 369–394. [CrossRef][PubMed]
    [Google Scholar]
  33. Rinke C., Schwientek P., Sczyrba A., Ivanova N. N., Anderson I. J., Cheng J. F., Darling A., Malfatti S., Swan B. K.. & other authors ( 2013;). Insights into the phylogeny and coding potential of microbial dark matter. . Nature 499:, 431–437. [CrossRef][PubMed]
    [Google Scholar]
  34. Sekiguchi Y., Yamada T., Hanada S., Ohashi A., Harada H., Kamagata Y.. ( 2003;). Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. . Int J Syst Evol Microbiol 53:, 1843–1851. [CrossRef][PubMed]
    [Google Scholar]
  35. Sorokin D. Y., Lücker S., Vejmelkova D., Kostrikina N. A., Kleerebezem R., Rijpstra W. I. C., Sinnighe Damsté J. S., Le Paslier D., Muyzer G.. & other authors ( 2012;). Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. . ISME J 6:, 2245–2256. [CrossRef][PubMed]
    [Google Scholar]
  36. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  37. Sutcliffe I. C.. ( 2011;). Cell envelope architecture in the Chloroflexi: a shifting frontline in a phylogenetic turf war. . Environ Microbiol 13:, 279–282. [CrossRef][PubMed]
    [Google Scholar]
  38. Takami H., Noguchi H., Takaki Y., Uchiyama I., Toyoda A., Nishi S., Chee G.-J., Arai W., Nunoura T.. & other authors ( 2012;). A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem. . PLoS ONE 7:, e30559. [CrossRef][PubMed]
    [Google Scholar]
  39. Tang S.-K., Wang Y., Chen Y., Lou K., Cao L.-L., Xu L.-H., Li W.-J.. ( 2009;). Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. . Int J Syst Evol Microbiol 59:, 2025–2032. [CrossRef][PubMed]
    [Google Scholar]
  40. Taş N., van Eekert M. H. A., de Vos W. M., Smidt H.. ( 2010;). The little bacteria that can – diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp. in contaminated environments. . Microb Biotechnol 3:, 389–402. [CrossRef][PubMed]
    [Google Scholar]
  41. Wu M., Eisen J. A.. ( 2008;). A simple, fast, and accurate method of phylogenomic inference. . Genome Biol 9:, R151. [CrossRef][PubMed]
    [Google Scholar]
  42. Yabe S., Aiba Y., Sakai Y., Hazaka M., Yokota A.. ( 2010;). Thermosporothrix hazakensis gen. nov., sp. nov., isolated from compost, description of Thermosporotrichaceae fam. nov. within the class Ktedonobacteria Cavaletti et al. 2007 and emended description of the class Ktedonobacteria. . Int J Syst Evol Microbiol 60:, 1794–1801. [CrossRef][PubMed]
    [Google Scholar]
  43. Yamada T., Sekiguchi Y.. ( 2009;). Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi ‘subphylum I’ with natural and biotechnological relevance. . Microbes Environ 24:, 205–216. [CrossRef][PubMed]
    [Google Scholar]
  44. Yamada T., Sekiguchi Y., Hanada S., Imachi H., Ohashi A., Harada H., Kamagata Y.. ( 2006;). Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. . Int J Syst Evol Microbiol 56:, 1331–1340. [CrossRef][PubMed]
    [Google Scholar]
  45. Yamada T., Imachi H., Ohashi A., Harada H., Hanada S., Kamagata Y., Sekiguchi Y.. ( 2007;). Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. . Int J Syst Evol Microbiol 57:, 2299–2306. [CrossRef][PubMed]
    [Google Scholar]
  46. Zhang C. L., Li Y., Ye Q., Fong J., Peacock A. D., Blunt E., Fang J., Lovley D. R., White D. C.. ( 2003;). Carbon isotope signatures of fatty acids in Geobacter metallireducens and Shewanella algae. . Chem Geol 195:, 17–28. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.055855-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055855-0
Loading

Data & Media loading...

Supplements

Supplementary Material

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error