1887

Abstract

Two Gram-staining-positive, rod-shaped and endospore-forming bacteria that represent a single species, designated strains GD05 and GD051, were isolated from a tropical forest soil and a hot spring sediment, respectively. Cells of both strains were facultatively anaerobic, catalase- and oxidase-positive, and could grow optimally at 50 °C, pH 8.0 and with 1 % (w/v) NaCl. Analysis of the 16S rRNA gene sequence revealed that these two isolates belonged to the family , but did not show sequence similarities of more than 95 % to members of other related genera. The G+C content of the genomic DNA was 43.7–44.1 mol%. The major cellular fatty acids were anteiso-C, iso-C, iso-C and anteiso-C. The main polar lipids were diphosphatidylglycerol and phosphatidylglycerol, and the major menaquinone was MK-7. The peptidoglycan type was A1γ (-diaminopimelic acid direct). On the basis of this polyphasic taxonomic analysis, the novel strains represent a novel species of a new genus in the family , order , for which the name gen. nov., sp. nov. is proposed. The type strain is GD05 ( = CCTCC AB 2013105 = KCTC 33117).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055608-0
2014-05-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1647.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055608-0&mimeType=html&fmt=ahah

References

  1. Amoozegar M. A., Bagheri M., Didari M., Shahzedeh Fazeli S. A., Schumann P., Sánchez-Porro C., Ventosa A.. ( 2013;). Saliterribacillus persicus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a hypersaline lake. . Int J Syst Evol Microbiol 63:, 345–351. [CrossRef][PubMed]
    [Google Scholar]
  2. An S. Y., Asahara M., Goto K., Kasai H., Yokota A.. ( 2007;). Terribacillus saccharophilus gen. nov., sp. nov. and Terribacillus halophilus sp. nov., spore-forming bacteria isolated from field soil in Japan. . Int J Syst Evol Microbiol 57:, 51–55. [CrossRef][PubMed]
    [Google Scholar]
  3. Baker G. C., Smith J. J., Cowan D. A.. ( 2003;). Review and re-analysis of domain-specific 16S primers. . J Microbiol Methods 55:, 541–555. [CrossRef][PubMed]
    [Google Scholar]
  4. Breznak J. A., Costilow R. N.. ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  5. Carrasco I. J., Márquez M. C., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A.. ( 2008;). Sediminibacillus halophilus gen. nov., sp. nov., a moderately halophilic, Gram-positive bacterium from a hypersaline lake. . Int J Syst Evol Microbiol 58:, 1961–1967. [CrossRef][PubMed]
    [Google Scholar]
  6. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  7. Dong X., Cai M.. ( 2001;). Manual of Systematic and Determinative Bacteriology. Beijing:: Academic Press (in Chinese);.
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K.. ( 1997;). Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. . Int J Syst Bacteriol 47:, 1129–1133. [CrossRef][PubMed]
    [Google Scholar]
  10. Heyndrickx M., Lebbe L., Kersters K., De Vos P., Forsyth G., Logan N. A.. ( 1998;). Virgibacillus: a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus. . Int J Syst Bacteriol 48:, 99–106. [CrossRef]
    [Google Scholar]
  11. Heyrman J., Logan N. A., Busse H. J., Balcaen A., Lebbe L., Rodriguez-Diaz M., Swings J., De Vos P.. ( 2003;). Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus. . Int J Syst Evol Microbiol 53:, 501–511. [CrossRef][PubMed]
    [Google Scholar]
  12. Hirota K., Aino K., Nodasaka Y., Yumoto I.. ( 2013;). Oceanobacillus indicireducens sp. nov., a facultative alkaliphile that reduces an indigo dye. . Int J Syst Evol Microbiol 63:, 1437–1442. [CrossRef][PubMed]
    [Google Scholar]
  13. Kim Y. G., Choi D. H., Hyun S., Cho B. C.. ( 2007;). Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. . Int J Syst Evol Microbiol 57:, 409–413. [CrossRef][PubMed]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  15. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  16. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L.. & other authors ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef][PubMed]
    [Google Scholar]
  17. Lu J., Nogi Y., Takami H.. ( 2001;). Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. . FEMS Microbiol Lett 205:, 291–297. [CrossRef][PubMed]
    [Google Scholar]
  18. Mayr R., Busse H. J., Worliczek H. L., Ehling-Schulz M., Scherer S.. ( 2006;). Ornithinibacillus gen. nov., with the species Ornithinibacillus bavariensis sp. nov. and Ornithinibacillus californiensis sp. nov.. Int J Syst Evol Microbiol 56:, 1383–1389. [CrossRef][PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  21. Nazina T. N., Tourova T. P., Poltaraus A. B., Novikova E. V., Grigoryan A. A., Ivanova A. E., Lysenko A. M., Petrunyaka V. V., Osipov G. A.. & other authors ( 2001;). Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. . Int J Syst Evol Microbiol 51:, 433–446.[PubMed]
    [Google Scholar]
  22. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI;.
    [Google Scholar]
  23. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  24. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  25. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Spring S., Ludwig W., Márquez M. C., Ventosa A., Schleifer K. H.. ( 1996;). Halobacillus gen. nov., with description of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov.. Int J Syst Bacteriol 46:, 492–496. [CrossRef]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  29. Wang X., Xue Y., Ma Y.. ( 2011;). Streptohalobacillus salinus gen. nov., sp. nov., a moderately halophilic, Gram-positive, facultative anaerobe isolated from subsurface saline soil. . Int J Syst Evol Microbiol 61:, 1127–1132. [CrossRef][PubMed]
    [Google Scholar]
  30. Zarilla K., Perry J. J.. ( 1987;). Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore-forming bacteria. . Syst Appl Microbiol 9:, 258–264. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.055608-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055608-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error