1887

Abstract

A non-motile, rod-shaped bacterium, designated strain A5, was isolated from a dye wastewater treatment facility in the Republic of Korea. Cells were Gram-reaction-negative, aerobic, catalase-positive and oxidase-negative. The major fatty acids were C, C, iso-C and summed feature 3 (Cω6 and/or Cω7) and the major polar lipid was phosphatidylethanolamine. The strain contained MK-7 as the only isoprenoid quinone and the DNA G+C content was 41.2 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain A5 forms an evolutionary lineage within the radiation encompassing the members of genus , with BR-3 as its nearest neighbour (96.6 % sequence similarity). A number of phenotypic characteristics distinguished strain A5 from the members of the genus . On the basis of the evidence presented in this study, strain A5 represents a novel species, for which the name sp. nov. is proposed. The type strain is A5 ( = KCTC 23922 = JCM 18283).

Funding
This study was supported by the:
  • National Institute of Biological Resources (NIBR) (Award 2013-02-001)
  • Ministry of Environment (MOE) of the Republic of Korea
  • Suncheon Research Center for Natural Medicines
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055590-0
2014-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/565.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055590-0&mimeType=html&fmt=ahah

References

  1. An D. S., Yin C. R., Lee S. T., Cho C. H. ( 2009 ). Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. . Int J Syst Evol Microbiol 59, 11221125. [View Article] [PubMed]
    [Google Scholar]
  2. Baik K. S., Park S. C., Kim E. M., Lim C. H., Seong C. N. ( 2010 ). Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter . . Int J Syst Evol Microbiol 60, 134139. [View Article] [PubMed]
    [Google Scholar]
  3. Bernardet J.-F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002 ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52, 10491070. [View Article] [PubMed]
    [Google Scholar]
  4. Chun J., Goodfellow M. ( 1995 ). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol 45, 240245. [View Article] [PubMed]
    [Google Scholar]
  5. CLSI ( 2009 ). Performance standards for antimicrobial susceptibility testing, 19th Informational Supplement. CLSI document M100-S19. Wayne, PA:: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  6. Collins M. D. ( 1994 ). Isoprenoid quinones. . In Chemical Methods in Prokaryotic Systematics, pp. 265309. Edited by Goodfellow M., O’Donnell A. G. . Chichester:: Wiley;.
    [Google Scholar]
  7. Cui C. H., Choi T. E., Yu H., Jin F., Lee S. T., Kim S. C., Im W. T. ( 2011 ). Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost. . J Microbiol 49, 393398. [View Article] [PubMed]
    [Google Scholar]
  8. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  9. Felsenstein J. ( 1993 ). phylip (phylogeny inference package), version 3.5c. . Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
    [Google Scholar]
  10. Fitch W. M. ( 1971 ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20, 406416. [View Article]
    [Google Scholar]
  11. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. ( 1974 ). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol 24, 5463. [View Article]
    [Google Scholar]
  12. Hall T. A. ( 1999 ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41, 9598.
    [Google Scholar]
  13. Han S. I., Lee H. J., Lee H. R., Kim K. K., Whang K. S. ( 2012 ). Mucilaginibacter polysacchareus sp. nov., an exopolysaccharide-producing bacterial species isolated from the rhizoplane of the herb Angelica sinensis . . Int J Syst Evol Microbiol 62, 632637. [View Article] [PubMed]
    [Google Scholar]
  14. Jeon Y., Lee S.-S., Chung B. S., Kim J. M., Bae J.-W., Park S. K., Jeon C. O. ( 2009 ). Mucilaginibacter oryzae sp. nov., isolated from soil of a rice paddy. . Int J Syst Evol Microbiol 59, 14511454. [View Article] [PubMed]
    [Google Scholar]
  15. Jiang F., Dai J., Wang Y., Xue X., Xu M., Guo Y., Li W., Fang C., Peng F. ( 2012 ). Mucilaginibacter soli sp. nov., isolated from Arctic tundra soil. . Int J Syst Evol Microbiol 62, 16301635. [View Article] [PubMed]
    [Google Scholar]
  16. Joung Y., Joh K. ( 2011 ). Mucilaginibacter myungsuensis sp. nov., isolated from a mesotrophic artificial lake. . Int J Syst Evol Microbiol 61, 15061510. [View Article] [PubMed]
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. ( 1969 ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21132. Edited by Munro H. N. . New York:: Academic Press;.
    [Google Scholar]
  18. Kang S. J., Jung Y. T., Oh K. H., Oh T. K., Yoon J. H. ( 2011 ). Mucilaginibacter boryungensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 61, 15491553. [View Article] [PubMed]
    [Google Scholar]
  19. Khan H., Chung E. J., Kang D. Y., Jeon C. O., Chung Y. R. ( 2013a ). Mucilaginibacter jinjuensis sp. nov., with xylan-degrading activity. . Int J Syst Evol Microbiol 63, 12671272. [View Article] [PubMed]
    [Google Scholar]
  20. Khan H., Chung E. J., Jeon C. O., Chung Y. R. ( 2013b ). Mucilaginibacter gynuensis sp. nov., isolated from rotten wood. . Int J Syst Evol Microbiol 63, 32253231. [View Article] [PubMed]
    [Google Scholar]
  21. Kim B. C., Lee K. H., Kim M. N., Lee J., Shin K. S. ( 2010 ). Mucilaginibacter dorajii sp. nov., isolated from the rhizosphere of Platycodon grandiflorum . . FEMS Microbiol Lett 309, 130135.[PubMed]
    [Google Scholar]
  22. Kim B. C., Poo H., Lee K. H., Kim M. N., Kwon O. Y., Shin K. S. ( 2012a ). Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha Maxim. . Int J Syst Evol Microbiol 62, 5560. [View Article] [PubMed]
    [Google Scholar]
  23. Kim J. H., Kang S. J., Jung Y. T., Oh T. K., Yoon J. H. ( 2012b ). Mucilaginibacter lutimaris sp. nov., isolated from a tidal flat sediment. . Int J Syst Evol Microbiol 62, 515519. [View Article] [PubMed]
    [Google Scholar]
  24. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. & other authors ( 2012c ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  25. Komagata K., Suzuki K. ( 1987 ). Lipids and cell-wall analysis in bacterial systematics. . Methods Microbiol 19, 161207. [View Article]
    [Google Scholar]
  26. Kovacs N. ( 1956 ). Identification of Pseudomonas pyocyanea by the oxidase reaction. . Nature 178, 703. [View Article] [PubMed]
    [Google Scholar]
  27. Luo X., Zhang L., Dai J., Liu M., Zhang K., An H., Fang C. ( 2009 ). Mucilaginibacter ximonensis sp. nov., isolated from Tibetan soil. . Int J Syst Evol Microbiol 59, 14471450. [View Article] [PubMed]
    [Google Scholar]
  28. Madhaiyan M., Poonguzhali S., Lee J. S., Senthilkumar M., Lee K. C., Sundaram S. ( 2010 ). Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. . Int J Syst Evol Microbiol 60, 24512457. [View Article] [PubMed]
    [Google Scholar]
  29. Männistö M. K., Tiirola M., McConnell J., Häggblom M. M. ( 2010 ). Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. . Int J Syst Evol Microbiol 60, 28492856. [View Article] [PubMed]
    [Google Scholar]
  30. Marmur J., Doty P. ( 1962 ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5, 109118. [View Article] [PubMed]
    [Google Scholar]
  31. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [View Article]
    [Google Scholar]
  32. Montero-Calasanz M. D., Göker M., Rohde M., Spröer C., Schumann P., Busse H.-J., Schmid M., Tindall B. J., Klenk H.-P., Camacho M. ( 2013 ). Chryseobacterium hispalense sp. nov., a plant growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emendation of the species Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . . Int J Syst Evol Microbiol (in press). [View Article] [PubMed]
    [Google Scholar]
  33. Pankratov T. A., Tindall B. J., Liesack W., Dedysh S. N. ( 2007 ). Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. . Int J Syst Evol Microbiol 57, 23492354. [View Article] [PubMed]
    [Google Scholar]
  34. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  35. Smibert R. M., Krieg N. R. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  36. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. ( 1998 ). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov.. Int J Syst Bacteriol 48, 165177. [View Article] [PubMed]
    [Google Scholar]
  37. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J. ( 1994 ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22, 46734680. [View Article] [PubMed]
    [Google Scholar]
  39. Urai M., Aizawa T., Nakagawa Y., Nakajima M., Sunairi M. ( 2008 ). Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. . Int J Syst Evol Microbiol 58, 20462050. [View Article] [PubMed]
    [Google Scholar]
  40. Yoon J. H., Kang S. J., Park S., Oh T. K. ( 2012 ). Mucilaginibacter litoreus sp. nov., isolated from marine sand. . Int J Syst Evol Microbiol 62, 28222827. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.055590-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055590-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error