1887

Abstract

A non-motile, rod-shaped bacterium, designated strain A5, was isolated from a dye wastewater treatment facility in the Republic of Korea. Cells were Gram-reaction-negative, aerobic, catalase-positive and oxidase-negative. The major fatty acids were C, C, iso-C and summed feature 3 (Cω6 and/or Cω7) and the major polar lipid was phosphatidylethanolamine. The strain contained MK-7 as the only isoprenoid quinone and the DNA G+C content was 41.2 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain A5 forms an evolutionary lineage within the radiation encompassing the members of genus , with BR-3 as its nearest neighbour (96.6 % sequence similarity). A number of phenotypic characteristics distinguished strain A5 from the members of the genus . On the basis of the evidence presented in this study, strain A5 represents a novel species, for which the name sp. nov. is proposed. The type strain is A5 ( = KCTC 23922 = JCM 18283).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055590-0
2014-02-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/565.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055590-0&mimeType=html&fmt=ahah

References

  1. An D. S., Yin C. R., Lee S. T., Cho C. H.. ( 2009;). Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. . Int J Syst Evol Microbiol 59:, 1122–1125. [CrossRef][PubMed]
    [Google Scholar]
  2. Baik K. S., Park S. C., Kim E. M., Lim C. H., Seong C. N.. ( 2010;). Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. . Int J Syst Evol Microbiol 60:, 134–139. [CrossRef][PubMed]
    [Google Scholar]
  3. Bernardet J.-F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  4. Chun J., Goodfellow M.. ( 1995;). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol 45:, 240–245. [CrossRef][PubMed]
    [Google Scholar]
  5. CLSI ( 2009;). Performance standards for antimicrobial susceptibility testing, 19th Informational Supplement. CLSI document M100-S19. Wayne, PA:: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  6. Collins M. D.. ( 1994;). Isoprenoid quinones. . In Chemical Methods in Prokaryotic Systematics, pp. 265–309. Edited by Goodfellow M., O’Donnell A. G... Chichester:: Wiley;.
    [Google Scholar]
  7. Cui C. H., Choi T. E., Yu H., Jin F., Lee S. T., Kim S. C., Im W. T.. ( 2011;). Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost. . J Microbiol 49:, 393–398. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Felsenstein J.. ( 1993;). phylip (phylogeny inference package), version 3.5c. . Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  10. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  11. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N.. ( 1974;). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol 24:, 54–63. [CrossRef]
    [Google Scholar]
  12. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  13. Han S. I., Lee H. J., Lee H. R., Kim K. K., Whang K. S.. ( 2012;). Mucilaginibacter polysacchareus sp. nov., an exopolysaccharide-producing bacterial species isolated from the rhizoplane of the herb Angelica sinensis. . Int J Syst Evol Microbiol 62:, 632–637. [CrossRef][PubMed]
    [Google Scholar]
  14. Jeon Y., Lee S.-S., Chung B. S., Kim J. M., Bae J.-W., Park S. K., Jeon C. O.. ( 2009;). Mucilaginibacter oryzae sp. nov., isolated from soil of a rice paddy. . Int J Syst Evol Microbiol 59:, 1451–1454. [CrossRef][PubMed]
    [Google Scholar]
  15. Jiang F., Dai J., Wang Y., Xue X., Xu M., Guo Y., Li W., Fang C., Peng F.. ( 2012;). Mucilaginibacter soli sp. nov., isolated from Arctic tundra soil. . Int J Syst Evol Microbiol 62:, 1630–1635. [CrossRef][PubMed]
    [Google Scholar]
  16. Joung Y., Joh K.. ( 2011;). Mucilaginibacter myungsuensis sp. nov., isolated from a mesotrophic artificial lake. . Int J Syst Evol Microbiol 61:, 1506–1510. [CrossRef][PubMed]
    [Google Scholar]
  17. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  18. Kang S. J., Jung Y. T., Oh K. H., Oh T. K., Yoon J. H.. ( 2011;). Mucilaginibacter boryungensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 61:, 1549–1553. [CrossRef][PubMed]
    [Google Scholar]
  19. Khan H., Chung E. J., Kang D. Y., Jeon C. O., Chung Y. R.. ( 2013a;). Mucilaginibacter jinjuensis sp. nov., with xylan-degrading activity. . Int J Syst Evol Microbiol 63:, 1267–1272. [CrossRef][PubMed]
    [Google Scholar]
  20. Khan H., Chung E. J., Jeon C. O., Chung Y. R.. ( 2013b;). Mucilaginibacter gynuensis sp. nov., isolated from rotten wood. . Int J Syst Evol Microbiol 63:, 3225–3231. [CrossRef][PubMed]
    [Google Scholar]
  21. Kim B. C., Lee K. H., Kim M. N., Lee J., Shin K. S.. ( 2010;). Mucilaginibacter dorajii sp. nov., isolated from the rhizosphere of Platycodon grandiflorum. . FEMS Microbiol Lett 309:, 130–135.[PubMed]
    [Google Scholar]
  22. Kim B. C., Poo H., Lee K. H., Kim M. N., Kwon O. Y., Shin K. S.. ( 2012a;). Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha Maxim. . Int J Syst Evol Microbiol 62:, 55–60. [CrossRef][PubMed]
    [Google Scholar]
  23. Kim J. H., Kang S. J., Jung Y. T., Oh T. K., Yoon J. H.. ( 2012b;). Mucilaginibacter lutimaris sp. nov., isolated from a tidal flat sediment. . Int J Syst Evol Microbiol 62:, 515–519. [CrossRef][PubMed]
    [Google Scholar]
  24. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012c;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  25. Komagata K., Suzuki K.. ( 1987;). Lipids and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  26. Kovacs N.. ( 1956;). Identification of Pseudomonas pyocyanea by the oxidase reaction. . Nature 178:, 703. [CrossRef][PubMed]
    [Google Scholar]
  27. Luo X., Zhang L., Dai J., Liu M., Zhang K., An H., Fang C.. ( 2009;). Mucilaginibacter ximonensis sp. nov., isolated from Tibetan soil. . Int J Syst Evol Microbiol 59:, 1447–1450. [CrossRef][PubMed]
    [Google Scholar]
  28. Madhaiyan M., Poonguzhali S., Lee J. S., Senthilkumar M., Lee K. C., Sundaram S.. ( 2010;). Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. . Int J Syst Evol Microbiol 60:, 2451–2457. [CrossRef][PubMed]
    [Google Scholar]
  29. Männistö M. K., Tiirola M., McConnell J., Häggblom M. M.. ( 2010;). Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. . Int J Syst Evol Microbiol 60:, 2849–2856. [CrossRef][PubMed]
    [Google Scholar]
  30. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  31. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  32. Montero-Calasanz M. D., Göker M., Rohde M., Spröer C., Schumann P., Busse H.-J., Schmid M., Tindall B. J., Klenk H.-P., Camacho M.. ( 2013;). Chryseobacterium hispalense sp. nov., a plant growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emendation of the species Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. . Int J Syst Evol Microbiol (in press). [CrossRef][PubMed]
    [Google Scholar]
  33. Pankratov T. A., Tindall B. J., Liesack W., Dedysh S. N.. ( 2007;). Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. . Int J Syst Evol Microbiol 57:, 2349–2354. [CrossRef][PubMed]
    [Google Scholar]
  34. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  35. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  36. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J.. ( 1998;). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov.. Int J Syst Bacteriol 48:, 165–177. [CrossRef][PubMed]
    [Google Scholar]
  37. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  39. Urai M., Aizawa T., Nakagawa Y., Nakajima M., Sunairi M.. ( 2008;). Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. . Int J Syst Evol Microbiol 58:, 2046–2050. [CrossRef][PubMed]
    [Google Scholar]
  40. Yoon J. H., Kang S. J., Park S., Oh T. K.. ( 2012;). Mucilaginibacter litoreus sp. nov., isolated from marine sand. . Int J Syst Evol Microbiol 62:, 2822–2827. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.055590-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055590-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error