1887

Abstract

A Gram-staining-negative, rod-shaped bacterium, strain HMD2169, was isolated from a mesotrophic artificial lake in Korea. Strain HMD2169 grew in the presence of 0–3.0 % (w/v) NaCl, at pH 5–10 and at 20–37 °C. The predominant quinone of strain HMD2169 was ubiquinone (UQ)-8. The major fatty acids were summed feature 3 (comprising Cω7 and/or Cω6), C and summed feature 8 (comprising Cω7 and/or Cω6). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, two unidentified aminolipids and two unidentified lipids. The DNA G+C content was 59.8 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HMD2169 was a representative of a lineage within the genus . Strain HMD2169 was closely related to (95.8 % sequence similarity) and (94.6 %). On the basis of the evidence presented in this study, strain HMD2169 is a representative of a novel species of the genus , for which the name sp. nov. is proposed with the type strain HMD2169 ( = KCTC 22839 = CECT 7703).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055442-0
2014-04-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/4/1123.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055442-0&mimeType=html&fmt=ahah

References

  1. Bernardet J. F., Vancanneyt M., Matte-Tailliez O., Grisez L., Tailliez P., Bizet C., Nowakowski M., Kerouault B., Swings J.. ( 2005;). Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. . Syst Appl Microbiol 28:, 640–660. [CrossRef][PubMed]
    [Google Scholar]
  2. Chang S. C., Wang J. T., Vandamme P., Hwang J. H., Chang P. S., Chen W. M.. ( 2004;). Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. . Syst Appl Microbiol 27:, 43–49. [CrossRef][PubMed]
    [Google Scholar]
  3. Cho J. C., Giovannoni S. J.. ( 2003;). Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α-Proteobacteria. . Int J Syst Evol Microbiol 53:, 1031–1036. [CrossRef][PubMed]
    [Google Scholar]
  4. Fautz E., Reichenbach H.. ( 1980;). A simple test for flexirubin-type pigments. . FEMS Microbiol Lett 8:, 87–91. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . 39:, 783–791.
    [Google Scholar]
  7. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . 20:, 406–416.
    [Google Scholar]
  8. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  9. Kim B. Y., Weon H. Y., Yoo S. H., Chen W. M., Kwon S. W., Go S. J., Stackebrandt E.. ( 2006;). Chitinimonas koreensis sp. nov., isolated from greenhouse soil in Korea. . Int J Syst Evol Microbiol 56:, 1761–1764. [CrossRef][PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  11. MacFaddin J. F.. ( 1980;). Biochemical Tests for Identification of Medical Bacteria, , 2nd edn.. Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  12. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  13. Ostle A. G., Holt J. G.. ( 1982;). Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. . Appl Environ Microbiol 44:, 238–241.[PubMed]
    [Google Scholar]
  14. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  15. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  16. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  17. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . 37:, 463–464.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.055442-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055442-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error