1887

Abstract

A Gram-staining-negative, aerobic and rod-shaped bacterial strain, designated HMC4223, was isolated from a tidal flat in Taean, Republic of Korea. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HMC4223 formed a lineage within the genus and exhibited highest sequence similarity to 7-UAH (96.3 %). The major fatty acids of strain HMC4223 were iso-C and summed feature 3 (comprising Cω6 and/or Cω7). The major respiratory quinone was MK-7. The major polar lipids were phosphatidylethanolamine and five unidentified polar lipids. The DNA G+C content of strain HMC4223 was 48.4 mol%. On the basis of the evidence presented in this study, strain HMC4223 represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain HMC4223 ( = KCTC 22709 = NBRC 105728). An emended description of is also presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055434-0
2014-01-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/21.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055434-0&mimeType=html&fmt=ahah

References

  1. Alegado R. A., Grabenstatter J. D., Zuzow R., Morris A., Huang S. Y., Summons R. E., King N.. ( 2013;). Algoriphagus machipongonensis sp. nov., co-isolated with a colonial choanoflagellate. . Int J Syst Evol Microbiol 63:, 163–168. [CrossRef][PubMed]
    [Google Scholar]
  2. Bernardet J.-F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  3. Bernardet J.-F., Vancanneyt M., Matte-Tailliez O., Grisez L., Tailliez P., Bizet C., Nowakowski M., Kerouault B., Swings J.. ( 2005;). Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. . Syst Appl Microbiol 28:, 640–660. [CrossRef][PubMed]
    [Google Scholar]
  4. Bowman J. P., Nichols C. M., Gibson J. A.. ( 2003;). Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. . Int J Syst Evol Microbiol 53:, 1343–1355. [CrossRef][PubMed]
    [Google Scholar]
  5. Copa-Patiño J. L., Arenas M., Soliveri J., Sánchez-Porro C., Ventosa A.. ( 2008;). Algoriphagus hitonicola sp. nov., isolated from an athalassohaline lagoon. . Int J Syst Evol Microbiol 58:, 424–428. [CrossRef][PubMed]
    [Google Scholar]
  6. Fautz E., Reichenbach H.. ( 1980;). A simple test for flexirubin-type pigments. . FEMS Microbiol Lett 8:, 87–91. [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783. [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  11. Kang H., Weerawongwiwat V., Jung M. Y., Myung S. C., Kim W.. ( 2013;). Algoriphagus chungangensis sp. nov., isolated from a tidal flat sediment. . Int J Syst Evol Microbiol 63:, 648–653. [CrossRef][PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  13. Lee D. H., Kahng H. Y., Lee S. B.. ( 2012;). Algoriphagus jejuensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 62:, 409–413. [CrossRef][PubMed]
    [Google Scholar]
  14. Li Y., Yan S., Yang Q., Qi Z., Zhang X. H., Fu Y. B.. ( 2011;). Algoriphagus faecimaris sp. nov., isolated from coastal sediment. . Int J Syst Evol Microbiol 61:, 2856–2860. [CrossRef][PubMed]
    [Google Scholar]
  15. MacFaddin J. F.. ( 1980;). Biochemical Tests for Identification of Medical Bacteria, , 2nd edn.. Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  16. Minnikin D., O’Donnell A., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  17. Oh K. H., Kang S. J., Lee S. Y., Park S., Oh T. K., Yoon J. H.. ( 2012;). Algoriphagus namhaensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 62:, 575–579. [CrossRef][PubMed]
    [Google Scholar]
  18. Park S., Kang S. J., Oh K. H., Oh T. K., Yoon J. H.. ( 2010;). Algoriphagus lutimaris sp. nov., isolated from a tidal flat sediment. . Int J Syst Evol Microbiol 60:, 200–204. [CrossRef][PubMed]
    [Google Scholar]
  19. Rau J. E., Blotevogel K. H., Fischer U.. ( 2012;). Algoriphagus aquaeductus sp. nov., isolated from a freshwater pipe. . Int J Syst Evol Microbiol 62:, 675–682. [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  21. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. , MIDI Technical Note 101. Newark, DE:: MIDI Inc.;
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  24. Young C. C., Lin S. Y., Arun A. B., Shen F. T., Chen W. M., Rekha P. D., Langer S., Busse H. J., Wu Y. H., Kämpfer P.. ( 2009;). Algoriphagus olei sp. nov., isolated from oil-contaminated soil. . Int J Syst Evol Microbiol 59:, 2909–2915. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.055434-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055434-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error