1887

Abstract

Two strains, designated 5413J-26 and KIS18-15, were isolated from the air and forest soil, respectively, in South Korea. Cells of the two strains were Gram-stain-negative, aerobic, polar-flagellated and rod-shaped. According to the phylogenetic tree, strains 5413J-26 and KIS18-15 fell into the cluster of . Strain 5413J-26 showed the highest sequence similarities with LMG 2142 (96.6 %), KMM 3882 (96.5 %), NBRC 15497 (96.3 %) and EDIV (96.1 %), while strain KIS18-15 had the highest sequence similarity with T5-04 (96.8 %), EDIV (96.6 %), ATCC 15260 (96.6 %), NBRC 15499 (96.6 %) and JSS26 (96.6 %). The 16S rRNA gene sequence similarity between strains 5413J-26 and KIS18-15 was 95.4 %. Ubiquinone 10 was the predominant respiratory quinone and homospermidine was the major polyamine. The major polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and several unidentified phospholipids and lipids. The main cellular fatty acids (>10 % of the total fatty acids) of strain 5413J-26 were summed feature 8 (Cω6 and/or Cω7), summed feature 3 (Cω7 and/or iso-C 2-OH) and C 2-OH, and those of strain KIS18-15 were summed feature 8 and C. Based on the results of 16S rRNA gene sequence analysis, and physiological and biochemical characterization, two novel species with the suggested names sp. nov. (type strain 5413J-26 = KACC 16533 = NBRC 108942) and sp. nov. (type strain KIS18-15 = KACC 16534 = NBRC 108943) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055269-0
2014-03-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/926.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055269-0&mimeType=html&fmt=ahah

References

  1. An D. S., Liu Q. M., Lee H. G., Jung M. S., Kim S. C., Lee S. T., Im W. T.. ( 2013;). Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov.. Int J Syst Evol Microbiol 63:, 496–501. [CrossRef][PubMed]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. (editors) ( 1987;). Current Protocols in Molecular Biology. New York:: Greene/Wiley Interscience;.
    [Google Scholar]
  3. Breznak J. A., Costilow R. N.. ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  4. Busse J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  5. Busse H.-J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  6. Chen H., Jogler M., Rohde M., Klenk H. P., Busse H. J., Tindall B. J., Spröer C., Overmann J.. ( 2012;). Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 62:, 2835–2843. [CrossRef][PubMed]
    [Google Scholar]
  7. Chung E. J., Jo E. J., Yoon H. S., Song G. C., Jeon C. O., Chung Y. R.. ( 2011;). Sphingomonas oryziterrae sp. nov. and Sphingomonas jinjuensis sp. nov. isolated from rhizosphere soil of rice (Oryza sativa L.). . Int J Syst Evol Microbiol 61:, 2389–2394. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Hamana K., Sakamoto A., Tachiyanagi S., Terauchi E., Takeuchi M.. ( 2003;). Polyamine profiles of some members of the alpha subclass of the class Proteobacteria: polyamine analysis of twenty recently described genera. . Microbiol Cult Collect 19:, 13–21 (in Japanese).
    [Google Scholar]
  10. Huang H. Y., Li J., Zhao G. Z., Zhu W. Y., Yang L. L., Tang H. Y., Xu L. H., Li W. J.. ( 2012;). Sphingomonas endophytica sp. nov., isolated from Artemisia annua L.. Int J Syst Evol Microbiol 62:, 1576–1580. [CrossRef][PubMed]
    [Google Scholar]
  11. Kämpfer P., Denner E. B., Meyer S., Moore E. R., Busse H. J.. ( 1997;). Classification of “Pseudomonas azotocolligans” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov.. Int J Syst Bacteriol 47:, 577–583. [CrossRef][PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  13. Kluge A. G., Farris J. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Biol 18:, 1–32. [CrossRef]
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  15. Maruyama T., Park H.-D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K.. ( 2006;). Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. . Int J Syst Evol Microbiol 56:, 85–89. [CrossRef][PubMed]
    [Google Scholar]
  16. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  17. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  18. Rivas R., Abril A., Trujillo M. E., Velázquez E.. ( 2004;). Sphingomonas phyllosphaerae sp. nov., from the phyllosphere of Acacia caven in Argentina. . Int J Syst Evol Microbiol 54:, 2147–2150. [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  21. Takeuchi M., Hamana K., Hiraishi A.. ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  23. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  24. Wittich R.-M., Busse H.-J., Kämpfer P., Macedo A. J., Tiirola M., Wieser M., Abraham W.-R.. ( 2007;). Sphingomonas fennica sp. nov. and Sphingomonas haloaromaticamans sp. nov., outliers of the genus Sphingomonas. . Int J Syst Evol Microbiol 57:, 1740–1746. [CrossRef][PubMed]
    [Google Scholar]
  25. Yabuuchi E., Kosako Y.. ( 2005;). Order IV Sphingomonadales Yabuuchi E., Kosako Y. . In Bergey’s Manual of Systematic Bacteriology (The proteobacteria part C), , 2nd edn., vol. 2, pp. 230–286. Edited by Garrity G. M., Brenner D. J., Krieg N. R., Staley J. R... New York:: Springer;.
    [Google Scholar]
  26. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H.. ( 1990;). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. . Microbiol Immunol 34:, 99–119. [CrossRef][PubMed]
    [Google Scholar]
  27. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K.. ( 2002;). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. . Int J Syst Evol Microbiol 52:, 1485–1496. [CrossRef][PubMed]
    [Google Scholar]
  28. Yang D. C., Im W. T., Kim M. K., Ohta H., Lee S. T.. ( 2006;). Sphingomonas soli sp. nov., a beta-glucosidase-producing bacterium in the family Sphingomonadaceae in the alpha-4 subgroup of the Proteobacteria. . Int J Syst Evol Microbiol 56:, 703–707. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.055269-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055269-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error