1887

Abstract

Two novel strains, THG-C26 and THG-C31, were characterized using a polyphasic approach to determine their taxonomic positions. These two isolates were aerobic, Gram-stain-positive, non-motile, non-spore-forming and rod-shaped. 16S rRNA gene sequences and phenotypic features including chemotaxonomic characteristics indicated that the two isolates clearly represented members of the genus . The quinone systems of strains THG-C26 and THG-C31 contained MK-12/MK-13 as major menaquinones. The diamino acid in cell-wall hydrolysates of the two strains was ornithine. The major fatty acids were iso-C, anteiso-C and anteiso-C. The polyamine pattern had spermidine as the predominant component. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol and unidentified glycolipids. Phenotypic characteristics supported the affiliation of strains THG-C26 and THG-C31 to the genus . Chemotaxonomic data and DNA–DNA relatedness values allowed differentiation of these strains from other species of the genus with validly published names. Strains THG-C26 and THG-C31 showed highest 16S rRNA gene sequence similarities with DMMZ 1710 (98.5 %) and IFO 15077 (98.8 %), respectively, and the 16S rRNA gene sequence similarity between them was 99.0 %. DNA–DNA hybridization values between the novel isolates and strains of other species of the genus with validly published names were 4–25 %. Therefore, strains THG-C26 and THG-C31 are considered to represent two novel species of the genus , for which the names sp. nov. [type strain THG-C26 ( = KACC 17124 = JCM 18735)] and sp. nov. [type strain THG-C31 ( = KACC 17123 = JCM 18734)] are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.054973-0
2014-07-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/7/2267.html?itemId=/content/journal/ijsem/10.1099/ijs.0.054973-0&mimeType=html&fmt=ahah

References

  1. Behrendt U., Ulrich A., Schumann P.. ( 2001;). Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al. 1998) as Microbacterium resistens comb. nov.. Int J Syst Evol Microbiol 51:, 1267–1276.[PubMed]
    [Google Scholar]
  2. Busse H.-J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  3. Busse H.-J., Kämpfer P., Denner E. B. M.. ( 1999;). Chemotaxonomic characterisation of Sphingomonas. . J Ind Microbiol Biotechnol 23:, 242–251. [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Jones D., Kroppenstedt R. M.. ( 1983;). Reclassification of Brevibacterium imperiale (Steinhaus) and “Corynebacterium laevaniformans” (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov.. Syst Appl Microbiol 4:, 65–78. [CrossRef][PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  10. Hiraishi A., Ueda Y., Ishihara J., Mori T.. ( 1996;). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. . J Gen Appl Microbiol 42:, 457–469. [CrossRef]
    [Google Scholar]
  11. Kim K. K., Lee K. C., Oh H. M., Lee J. S.. ( 2008;). Microbacterium aquimaris sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 58:, 1616–1620. [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  14. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  15. Orla-Jensen S.. ( 1919;). The Lactic Acid Bacteria. Copenhagen:: Høst & Sons;.
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  18. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  19. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  20. Schumann P., Kämpfer P., Busse H. J., Evtushenko L. I..Subcommittee on the Taxonomy of the Suborder Micrococcineae of the International Committee on Systematics of Prokaryotes ( 2009;). Proposed minimal standards for describing new genera and species of the suborder Micrococcineae. . Int J Syst Evol Microbiol 59:, 1823–1849. [CrossRef][PubMed]
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  22. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  23. Taibi G., Schiavo M. R., Gueli M. C., Calanni-Rindina P., Muratore R., Nicotra C. M.. ( 2000;). Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. . J Chromatogr B Biomed Sci Appl 745:, 431–437. [CrossRef][PubMed]
    [Google Scholar]
  24. Takeuchi M., Hatano K.. ( 1998a;). Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. . Int J Syst Bacteriol 48:, 739–747. [CrossRef][PubMed]
    [Google Scholar]
  25. Takeuchi M., Hatano K.. ( 1998b;). Proposal of six new species in the genus Microbacterium and transfer of Flavobacterium marinotypicum ZoBell and Upham to the genus Microbacterium as Microbacterium maritypicum comb. nov.. Int J Syst Bacteriol 48:, 973–982. [CrossRef][PubMed]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  28. Uchida K., Kudo T., Suzuki K. I., Nakase T.. ( 1999;). A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. . J Gen Appl Microbiol 45:, 49–56. [CrossRef][PubMed]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  30. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.054973-0
Loading
/content/journal/ijsem/10.1099/ijs.0.054973-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error