1887

Abstract

Two strains, 8-4-E12 and 8-4-E13, were isolated from a biowaste composting reactor. Based on 16S rRNA gene sequences, both strains belong to the genus . Strain 8-4-E12 was most closely related to the type strains of , , and (96.4, 96.3, 96.0 and 95.6 % 16S rRNA gene similarity, respectively), whereas strain 8-4-E13 was most closely related to the type strain of (96.5 % sequence similarity). Strains 8-4-E12 and 8-4-E13 shared 94 % 16S rRNA gene sequence similarity. The fatty acid profile of strain 8-4-E12 was dominated by saturated iso- and anteiso-branched fatty acids (iso-C, anteiso-C, anteiso-C and iso-C), and also contained considerable amounts of C. The fatty acid profile of strain 8-4-E13 showed a predominance of iso-C (65 %), with smaller amounts of other saturated branched-chain fatty acids along with an unsaturated alcohol. Both strains contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as major polar lipids. Additionally, strain 8-4-E12 contained an unknown lipid and strain 8-4-E13 two unknown (amino-)phospholipids. The diagnostic diamino acid found in the cell-wall peptidoglycan of 8-4-E12 and 8-4-E13 was -diaminopimelic acid. The predominant menaquinone was MK-7. The results of physiological and biochemical tests also allowed phenotypic differentiation of the two strains from each other and from related species. On the basis of their phylogenetic, phenotypic and chemotaxonomic properties, strains 8-4-E12 and 8-4-E13 represent novel species of the genus , for which the names sp. nov. (type strain 8-4-E12 = DSM 23947 = LMG 27601) and sp. nov. (type strain 8-4-E13 = DSM 23948 = LMG 27602) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.054833-0
2014-01-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/88.html?itemId=/content/journal/ijsem/10.1099/ijs.0.054833-0&mimeType=html&fmt=ahah

References

  1. Albert R. A., Archambault J., Rosselló-Mora R., Tindall B. J., Matheny M.. ( 2005;). Bacillus acidicola sp. nov., a novel mesophilic, acidophilic species isolated from acidic Sphagnum peat bogs in Wisconsin. . Int J Syst Evol Microbiol 55:, 2125–2130. [CrossRef][PubMed]
    [Google Scholar]
  2. Breitenstein A., Saano A., Salkinoja-Salonen M., Andreesen J. R., Lechner U.. ( 2001;). Analysis of a 2,4,6-trichlorophenol-dehalogenating enrichment culture and isolation of the dehalogenating member Desulfitobacterium frappieri strain TCP-A. . Arch Microbiol 175:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  3. Breitenstein A., Wiegel J., Haertig C., Weiss N., Andreesen J. R., Lechner U.. ( 2002;). Reclassification of Clostridium hydroxybenzoicum as Sedimentibacter hydroxybenzoicus gen. nov., comb. nov., and description of Sedimentibacter saalensis sp. nov.. Int J Syst Evol Microbiol 52:, 801–807. [CrossRef][PubMed]
    [Google Scholar]
  4. Cho K. M., Lee S. M., Math R. K., Islam S. M., Kambiranda D. M., Kim J. M., Yun M. G., Cho J. J., Kim J. O. et al. ( 2008;). Culture-independent analysis of microbial succession during composting of swine slurry and mushroom cultural wastes. . J Microbiol Biotechnol 18:, 1874–1883.[PubMed]
    [Google Scholar]
  5. Cohn F.. ( 1872;). Untersuchungen über Bakterien. . Beitr Biol Pflanz 1:, 127–224 (in German).
    [Google Scholar]
  6. Dees P. M., Ghiorse W. C.. ( 2001;). Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. . FEMS Microbiol Ecol 35:, 207–216. [CrossRef][PubMed]
    [Google Scholar]
  7. Denizci A. A., Kazan D., Erarslan A.. ( 2010;). Bacillus marmarensis sp. nov., an alkaliphilic, protease-producing bacterium isolated from mushroom compost. . Int J Syst Evol Microbiol 60:, 1590–1594. [CrossRef][PubMed]
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  9. Heyndrickx M., Coorevits A., Scheldeman P., Lebbe L., Schumann P., Rodríguez-Diaz M., Forsyth G., Dinsdale A., Heyrman J. et al. ( 2012;). Emended descriptions of Bacillus sporothermodurans and Bacillus oleronius with the inclusion of dairy farm isolates of both species. . Int J Syst Evol Microbiol 62:, 307–314. [CrossRef][PubMed]
    [Google Scholar]
  10. Heyrman J., Rodríguez-Díaz M., Devos J., Felske A., Logan N. A., De Vos P.. ( 2005;). Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated from soil. . Int J Syst Evol Microbiol 55:, 111–117. [CrossRef][PubMed]
    [Google Scholar]
  11. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H. J., Tindall B. J.. ( 2006;). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56:, 781–786. [CrossRef][PubMed]
    [Google Scholar]
  14. Kuhnigk T., Borst E.-M., Breunig A., König H., Collins M. D., Hutson R. A., Kämpfer P.. ( 1995;). Bacillus oleronius sp.nov., a member of the hindgut flora of the termite Reticulitermes santonensis (Feytaud). . Can J Microbiol 41:, 699–706. [CrossRef][PubMed]
    [Google Scholar]
  15. Kwon S. W., Lee S. Y., Kim B. Y., Weon H. Y., Kim J. B., Go S. J., Lee G. B.. ( 2007;). Bacillus niabensis sp. nov., isolated from cotton-waste composts for mushroom cultivation. . Int J Syst Evol Microbiol 57:, 1909–1913. [CrossRef][PubMed]
    [Google Scholar]
  16. Lechner U., Brodkorb D., Geyer R., Hause G., Härtig C., Auling G., Fayolle-Guichard F., Piveteau P., Müller R. H., Rohwerder T.. ( 2007;). Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. . Int J Syst Evol Microbiol 57:, 1295–1303. [CrossRef][PubMed]
    [Google Scholar]
  17. Logan N. A., De Vos P.. ( 2009;). Genus I. Bacillus Cohn 1872, 174AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 3, pp. 21–128. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  18. Logan N. A., Lebbe L., Verhelst A., Goris J., Forsyth G., Rodríguez-Díaz M., Heyndrickx M., De Vos P.. ( 2004;). Bacillus shackletonii sp. nov., from volcanic soil on Candlemas Island, South Sandwich archipelago. . Int J Syst Evol Microbiol 54:, 373–376. [CrossRef][PubMed]
    [Google Scholar]
  19. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. et al. ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef][PubMed]
    [Google Scholar]
  20. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  21. Pappa A., Sánchez-Porro C., Lazoura P., Kallimanis A., Perisynakis A., Ventosa A., Drainas C., Koukkou A. I.. ( 2010;). Bacillus halochares sp. nov., a halophilic bacterium isolated from a solar saltern. . Int J Syst Evol Microbiol 60:, 1432–1436. [CrossRef][PubMed]
    [Google Scholar]
  22. Pettersson B., Lembke F., Hammer P., Stackebrandt E., Priest F. G.. ( 1996;). Bacillus sporothermodurans, a new species producing highly heat-resistant endospores. . Int J Syst Bacteriol 46:, 759–764. [CrossRef][PubMed]
    [Google Scholar]
  23. Ryckeboer J., Mergaerts J., Vaes K., Klammer S., De Clercq D., Coosemans J., Insam H., Swings J.. ( 2003;). A survey of bacteria and fungi occurring during composting and self-heating processes. . Ann Microbiol 53:, 349–410.
    [Google Scholar]
  24. Schleifer K.-H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  25. Straube G., Hensel J., Niedan C., Straube E.. ( 1990;). Kinetic studies of phenol degradation by Rhodococcus sp. P1. I. Batch cultivation. . Antonie van Leeuwenhoek 57:, 29–32. [CrossRef][PubMed]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  27. Tindall B. J.. ( 1990;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.054833-0
Loading
/content/journal/ijsem/10.1099/ijs.0.054833-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error