1887

Abstract

Two Gram-reaction-negative, aerobic, nitrogen-fixing, rod-shaped bacteria, designated strains E20 and E50, were isolated from the rhizosphere of salt meadow plants and , respectively, near Münzenberg, Germany. Based on the 16S rRNA gene sequence analysis both strains E20 and E50 are affiliated with the genus , sharing the highest similarity with LMG 18551 (96.4 %) and (97.1 %), respectively. Strains E20 and E50 were oxidase and catalase-positive, grew at a temperature range between 16 and 37 °C and in the presence of 0–5 % NaCl (w/v). The DNA G+C contents were 52.1 mol% (E20) and 51.6 mol% (E50). Major fatty acids of strains E20 and E50 were summed feature 3 (Cω7 and/or iso-C 2-OH), C, Cω7, C, C and C 3-OH. The DNA–DNA relatedness of the strains to LMG 18551 was 39 % for strain E20 and 58 % for strain E50. The nitrogen fixation capability of strains E20 and E50 was confirmed by the acetylene reduction assay. On the basis of our polyphasic taxonomic study, strains E20 and E50 represent a novel species of the genus , for which the name is proposed. The type strain of is E50 ( = LMG 27267 = KACC 17069). An emended description of the genus is proposed based on the capability of fixing nitrogen and growth in presence of up to 5 % NaCl (w/v).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.054817-0
2014-02-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/481.html?itemId=/content/journal/ijsem/10.1099/ijs.0.054817-0&mimeType=html&fmt=ahah

References

  1. Albrecht S. L., Okon Y.. ( 1980;). Cultures of Azospirillum. . Methods in enzymology, 69:, 739–749. [CrossRef]
    [Google Scholar]
  2. Anderson M., Habiger J.. ( 2012;). Characterization and identification of productivity-associated rhizobacteria in wheat. . Appl Environ Microbiol 78:, 4434–4446. [CrossRef][PubMed]
    [Google Scholar]
  3. Blackall L. L., Hayward A. C., Sly L. I.. ( 1985;). Cellulolytic and dextranolytic Gram-negative bacteria: revival of the genus Cellvibrio. . J Bacteriol 59:, 81–97. [CrossRef]
    [Google Scholar]
  4. Bradford M. M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. . Anal Biochem 72:, 248–254. [CrossRef][PubMed]
    [Google Scholar]
  5. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  6. DeBoy R. T., Mongodin E. F., Fouts D. E., Tailford L. E., Khouri H., Emerson J. B., Mohamoud Y., Watkins K., Henrissat B.. & other authors ( 2008;). Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. . J Bacteriol 190:, 5455–5463. [CrossRef][PubMed]
    [Google Scholar]
  7. Doudoroff M., Palleroni N. J.. ( 1974;). Genus I. . Pseudomonas Migula 1894. Addendum IV. Bergey’s Manual of Determinative Bacteriology, 8th edn, pp. 241–242. Edited by Buchanan R. E., Gibbons N. E... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Gerhard P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  11. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  12. Hardy R. W. F., Holsten R. D., Jackson E. K., Burns R. C.. ( 1968;). The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. . Plant Physiol 43:, 1185–1207. [CrossRef][PubMed]
    [Google Scholar]
  13. Heimbrook M. E., Wang W. L. L., Campbell G.. ( 1989;). Staining bacterial flagella easily. . J Clin Microbiol 27:, 2612–2615.[PubMed]
    [Google Scholar]
  14. Huber T., Faulkner G., Hugenholtz P.. ( 2004;). Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. . Bioinformatics 20:, 2317–2319. [CrossRef][PubMed]
    [Google Scholar]
  15. Humphry D. R., Black G. W., Cummings S. P.. ( 2003;). Reclassification of ‘Pseudomonas fluorescens subsp. cellulosa’ NCIMB 10462 (Ueda et al. 1952) as Cellvibrio japonicus sp. nov. and revival of Cellvibrio vulgaris sp. nov., nom. rev. and Cellvibrio fulvus sp. nov., nom. rev.. Int J Syst Evol Microbiol 53:, 393–400. [CrossRef][PubMed]
    [Google Scholar]
  16. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  17. Kampmann K., Ratering S., Kramer I., Schmidt M., Zerr W., Schnell S.. ( 2012;). Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. . Appl Environ Microbiol 78:, 2106–2119. [CrossRef][PubMed]
    [Google Scholar]
  18. Kasana R. C., Salwan R., Dhar H., Dutt S., Gulati A.. ( 2008;). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. . Curr Microbiol 57:, 503–507. [CrossRef][PubMed]
    [Google Scholar]
  19. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  20. Linkerhägner K., Oelze J.. ( 1997;). Nitrogenase activity and regeneration of the cellular ATP pool in Azotobacter vinelandii adapted to different oxygen concentrations. . J Bacteriol 179:, 1362–1367.[PubMed]
    [Google Scholar]
  21. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K. H.. ( 1998;). Bacterial phylogeny based on comparative sequence analysis. . Electrophoresis 19:, 554–568. [CrossRef][PubMed]
    [Google Scholar]
  22. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  23. Mergaert J., Lednická D., Goris J., Cnockaert M. C., De Vos P., Swings J.. ( 2003;). Taxonomic study of Cellvibrio strains and description of Cellvibrio ostraviensis sp. nov., Cellvibrio fibrivorans sp. nov. and Cellvibrio gandavensis sp. nov.. Int J Syst Evol Microbiol 53:, 465–471. [CrossRef][PubMed]
    [Google Scholar]
  24. Moré M. I., Herrick J. B., Silva M. C., Ghiorse W. C., Madsen E. L.. ( 1994;). Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. . Appl Environ Microbiol 60:, 1572–1580.[PubMed]
    [Google Scholar]
  25. Pfennig N.. ( 1978;). Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. . Int J Syst Bacteriol 28:, 283–288. [CrossRef]
    [Google Scholar]
  26. Poly F., Monrozier L. J., Bally R.. ( 2001;). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. . Res Microbiol 152:, 95–103. [CrossRef][PubMed]
    [Google Scholar]
  27. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  28. Rhee Y. J., Han C. R., Kim W. C., Jun D. Y., Rhee I. K., Kim Y. H.. ( 2010;). Isolation of a novel freshwater agarolytic Cellvibrio sp. KY-YJ-3 and characterization of its extracellular β-agarase. . J Microbiol Biotechnol 20:, 1378–1385. [CrossRef][PubMed]
    [Google Scholar]
  29. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  30. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20:, 16.
    [Google Scholar]
  31. Schwintzer C. R., Tjepkema J. D.. ( 1994;). Factors affecting the acetylene to 15N2 conversion ratio in root nodules of Myrica gale L.. Plant Physiol 106:, 1041–1047.[PubMed]
    [Google Scholar]
  32. Skerman V. B. D., McGowan V., Sneath P. H. A.. ( 1980;). Approved lists of bacterial names. . Int J Syst Bacteriol 30:, 225–420. [CrossRef]
    [Google Scholar]
  33. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  34. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  35. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  36. Turner G. L., Gibson A. H.. ( 1980;). Measurement of nitrogen fixation by indirect means. . In Methods for Evaluating Biological Nitrogen Fixation, pp. 111–139. Edited by Bergensen F. J... Chichester:: Wiley;.
    [Google Scholar]
  37. Voget S., Steele H. L., Streit W. R.. ( 2006;). Characterization of a metagenome-derived halotolerant cellulase. . J Biotechnol 126:, 26–36. [CrossRef][PubMed]
    [Google Scholar]
  38. Winogradsky S.. ( 1929;). Études sur la microbiologie du sol. Sur la dégradation de la cellulose dans le sol. . Ann Inst Pasteur (Paris) 43:, 549–633.
    [Google Scholar]
  39. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K.-H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
  40. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. ( 1998;). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.054817-0
Loading
/content/journal/ijsem/10.1099/ijs.0.054817-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error