1887

Abstract

A thallium-tolerant, aerobic bacterium, designated strain SK200a-9, isolated from a garden soil sample was characterized using a polyphasic approach. Comparative analysis of 16S rRNA gene sequences revealed that strain SK200a-9 was affiliated with an uncultivated lineage within the and the nearest cultivated neighbours were bacteria in genera in the family (93.3–94.4 % 16S rRNA gene sequence similarity) and the family (92.3–93.1 %) in the order . Cells of strain SK200a-9 were Gram-stain-negative, non-motile, non-spore-forming, poly-β-hydroxybutyrate-accumulating rods. The strain was a chemo-organotrophic bacterium, which was incapable of growth on C1 substrates. Catalase and oxidase were positive. Atmospheric nitrogen fixation and nitrate reduction were negative. The strain contained ubiquinone Q-10 and cellular fatty acids Cω7, C, Cω7 and C as predominant components. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content was 64.8 mol%. On the basis of the information described above, strain SK200a-9 is considered to represent a novel species of a new genus in the order , for which the name gen. nov., sp. nov. is proposed. The type strain of is SK200a-9 ( = NBRC 107718 = CGMCC 1.12214).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.054783-0
2014-03-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/775.html?itemId=/content/journal/ijsem/10.1099/ijs.0.054783-0&mimeType=html&fmt=ahah

References

  1. Bao Z., Sato Y., Kubota M., Ohta H.. ( 2006;). Isolation and characterization of thallium-tolerant bacteria from heavy metal-polluted river sediment and non-polluted soils. . Microbes Environ 21:, 251–260. [CrossRef]
    [Google Scholar]
  2. Belova S. E., Kulichevskaya I. S., Bodelier P. L. E., Dedysh S. N.. ( 2013;). Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. . Int J Syst Evol Microbiol 63:, 1096–1104. [CrossRef][PubMed]
    [Google Scholar]
  3. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C.. ( 1993;). Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. . Int J Syst Bacteriol 43:, 735–753. [CrossRef]
    [Google Scholar]
  4. Dedysh S. N., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Liesack W., Tiedje J. M.. ( 2002;). Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. . Int J Syst Evol Microbiol 52:, 251–261.[PubMed]
    [Google Scholar]
  5. Dedysh S. N., Berestovskaya Y. Y., Vasylieva L. V., Belova S. E., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Liesack W., Zavarzin G. A.. ( 2004;). Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. . Int J Syst Evol Microbiol 54:, 151–156. [CrossRef][PubMed]
    [Google Scholar]
  6. Dedysh S. N., Smirnova K. V., Khmelenina V. N., Suzina N. E., Liesack W., Trotsenko Y. A.. ( 2005;). Methylotrophic autotrophy in Beijerinckia mobilis. . J Bacteriol 187:, 3884–3888. [CrossRef][PubMed]
    [Google Scholar]
  7. Dianou D., Ueno C., Ogiso T., Kimura M., Asakawa S.. ( 2012;). Diversity of cultivable methane-oxidizing bacteria in microsites of a rice paddy field: investigation by cultivation method and fluorescence in situ hybridization (FISH). . Microbes Environ 27:, 278–287. [CrossRef][PubMed]
    [Google Scholar]
  8. Dittmer J. C., Lester R. L.. ( 1964;). A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. . J Lipid Res 5:, 126–127.[PubMed]
    [Google Scholar]
  9. Dunfield P. F., Belova S. E., Vorob’ev A. V., Cornish S. L., Dedysh S. N.. ( 2010;). Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. . Int J Syst Evol Microbiol 60:, 2659–2664. [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  12. Hugh R., Leifson E.. ( 1953;). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. . J Bacteriol 66:, 24–26.[PubMed]
    [Google Scholar]
  13. Hwang C. Y., Cho B. C.. ( 2008;). Cohaesibacter gelatinilyticus gen. nov., sp. nov., a marine bacterium that forms a distinct branch in the order Rhizobiales, and proposal of Cohaesibacteraceae fam. nov.. Int J Syst Evol Microbiol 58:, 267–277. [CrossRef][PubMed]
    [Google Scholar]
  14. Ikemoto S., Kathoh K., Komagata K.. ( 1978;). Cellular fatty acid composition in methanol-utilizing bacteria. . J Gen Appl Microbiol 24:, 41–49. [CrossRef]
    [Google Scholar]
  15. Ishii S., Ohno H., Tsuboi M., Otsuka S., Senoo K.. ( 2011;). Identification and isolation of active N2O reducers in rice paddy soil. . ISME J 5:, 1936–1945. [CrossRef][PubMed]
    [Google Scholar]
  16. Kennedy C.. ( 2005;). Genus I. Beijerinckia Derx 1950a, 145AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, pp. 423–432. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  17. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  18. Lu H., Sato Y., Fujimura R., Nishizawa T., Kamijo T., Ohta H.. ( 2011;). Limnobacter litoralis sp. nov., a thiosulfate-oxidizing heterotrophic bacterium isolated from volcanic deposits on Miyakejima, Japan. . Int J Syst Evol Microbiol 61:, 404–407. [CrossRef][PubMed]
    [Google Scholar]
  19. Oggerin M., Arahal D. R., Rubio V., Marín I.. ( 2009;). Identification of Beijerinckia fluminensis strains CIP 106281T and UQM 1685T as Rhizobium radiobacter strains, and proposal of Beijerinckia doebereinerae sp. nov. to accommodate Beijerinckia fluminensis LMG 2819. . Int J Syst Evol Microbiol 59:, 2323–2328. [CrossRef][PubMed]
    [Google Scholar]
  20. Ohta H.. ( 2000;). Growth characteristics of Agromonas oligotrophica on ferulic acid. . Microbes Environ 15:, 133–142. [CrossRef]
    [Google Scholar]
  21. Ohta H.. ( 2001;). Kinetic analysis of ferulic acid degradation by oligotrophic Sphingomonas sp. S213 during growth in batch and continuous cultures. . Microbes Environ 16:, 9–17. [CrossRef]
    [Google Scholar]
  22. Ohta H., Gottschal J. C.. ( 1988;). Microaerophilic growth of Wolinella recta ATCC 33238. . FEMS Microbiol Ecol 53:, 79–86. [CrossRef]
    [Google Scholar]
  23. Ohta H., Hattori T.. ( 1983;). Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. . Antonie van Leeuwenhoek 49:, 429–446.[PubMed]
    [Google Scholar]
  24. Ohta H., Ogiwara K., Murakami E., Takahashi H., Sekiguchi M., Koshida K., Someya T., Morishima W., Rondal J. D.. & other authors ( 2003;). Quinone profiling of bacterial populations developed in the surface layer of volcanic mudflow deposits from Mt. Pinatubo (the Philippines). . Soil Biol Biochem 35:, 1155–1158. [CrossRef]
    [Google Scholar]
  25. Peter A. L. J., Viraraghavan T.. ( 2005;). Thallium: a review of public health and environmental concerns. . Environ Int 31:, 493–501. [CrossRef][PubMed]
    [Google Scholar]
  26. Poly F., Monrozier L. J., Bally R.. ( 2001a;). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. . Res Microbiol 152:, 95–103. [CrossRef][PubMed]
    [Google Scholar]
  27. Poly F., Ranjard L., Nazaret S., Gourbière F., Monrozier L. J.. ( 2001b;). Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. . Appl Environ Microbiol 67:, 2255–2262. [CrossRef][PubMed]
    [Google Scholar]
  28. Rintala H., Pitkäranta M., Toivola M., Paulin L., Nevalainen A.. ( 2008;). Diversity and seasonal dynamics of bacterial community in indoor environment. . BMC Microbiol 8:, 56. [CrossRef][PubMed]
    [Google Scholar]
  29. Rösch C., Bothe H.. ( 2005;). Improved assessment of denitrifying, N2-fixing, and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. . Appl Environ Microbiol 71:, 2026–2035. [CrossRef][PubMed]
    [Google Scholar]
  30. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  31. Sato Y., Hosokawa K., Fujimura R., Nishizawa T., Kamijo T., Ohta H.. ( 2009;). Nitrogenase activity (acetylene reduction) of an iron-oxidizing Leptospirillum strain cultured as a pioneer microbe from a recent volcanic deposit on Miyake-jima, Japan. . Microbes Environ 24:, 291–296. [CrossRef][PubMed]
    [Google Scholar]
  32. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  33. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  34. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  35. Ueda T., Suga Y., Yahiro N., Matsuguchi T.. ( 1995;). Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. . J Bacteriol 177:, 1414–1417.[PubMed]
    [Google Scholar]
  36. Vorob’ev A. V., de Boer W., Folman L. B., Bodelier P. L. E., Doronina N. V., Suzina N. E., Trotsenko Y. A., Dedysh S. N.. ( 2009;). Methylovirgula ligni gen. nov., sp. nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. . Int J Syst Evol Microbiol 59:, 2538–2545. [CrossRef][PubMed]
    [Google Scholar]
  37. Vorobev A. V., Baani M., Doronina N. V., Brady A. L., Liesack W., Dunfield P. F., Dedysh S. N.. ( 2011;). Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. . Int J Syst Evol Microbiol 61:, 2456–2463. [CrossRef][PubMed]
    [Google Scholar]
  38. Wang G. C., Wang Y.. ( 1997;). Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes. . Appl Environ Microbiol 63:, 4645–4650.[PubMed]
    [Google Scholar]
  39. Whittenbury R., Phillips K. C., Wilkinson J. F.. ( 1970;). Enrichment, isolation and some properties of methane-utilizing bacteria. . J Gen Microbiol 61:, 205–218. [CrossRef][PubMed]
    [Google Scholar]
  40. Wierzbicka M., Szarek-Łukaszewska G., Grodzińska K.. ( 2004;). Highly toxic thallium in plants from the vicinity of Olkusz (Poland). . Ecotoxicol Environ Saf 59:, 84–88. [CrossRef][PubMed]
    [Google Scholar]
  41. Xiao T., Yang F., Li S., Zheng B., Ning Z.. ( 2012;). Thallium pollution in China: a geo-environmental perspective. . Sci Total Environ 421-422:, 51–58. [CrossRef][PubMed]
    [Google Scholar]
  42. Yang C., Chen Y., Peng P., Li C., Chang X., Xie C.. ( 2005;). Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area. . Sci Total Environ 341:, 159–172. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.054783-0
Loading
/content/journal/ijsem/10.1099/ijs.0.054783-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error