1887

Abstract

Two halophilic moderately acidophilic archaeal strains, MH1-136-2 and MH1-370-1 were isolated from commercial salt samples made from seawater in Japan and Indonesia, respectively. Cells of the two strains were pleomorphic and Gram-stain-negative. Strain MH1-136-2 was pink pigmented, while MH1-370-1 was orange–red pigmented. Strain MH1-136-2 was able to grow at 9–30 % (w/v) NaCl (with optimum, 21 % NaCl, w/v) at pH 4.5–6.2 (optimum, pH 5.2–5.5) and at 18–55 °C (optimum, 45 °C). Strain MH1-370-1 was able to grow at 12–30 % (w/v) NaCl (optimum, 18 %, w/v) at pH 4.2–6.0 (optimum, pH 5.2–5.5) and 20–50 °C (optimum, 45 °C). Strain MH1-136-2 required at least 1 mM Mg, while MH1-370-1 required at least 10 mM for growth. Both strains reduced nitrate and nitrite under aerobic conditions. The 16S rRNA gene sequences of strains MH1-136-2 and MH1-370-1 were identical, and the closest relative was MH1-16-3 with 98.3 % similarity. The level of DNA–DNA relatedness between these strains was 90.9 % and 92.4 % (reciprocally), while that between MH1-136-2 and MH1-52-1, MH1-34-1 and MH1-16-3 was 37.7 %, 44.3 % and 41.1 % (each an average), respectively. Based on the phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolates represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MH1-136-2 ( = JCM 16331 = CECT 7573) isolated from solar salt produced in Japan.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.054668-0
2013-11-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4202.html?itemId=/content/journal/ijsem/10.1099/ijs.0.054668-0&mimeType=html&fmt=ahah

References

  1. Cline S. W., Schalkwyk L. C., Doolittle W. F.. ( 1989;). Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. . J Bacteriol 171:, 4987–4991.[PubMed]
    [Google Scholar]
  2. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: An approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Gonzalez C., Gutierrez C., Ramirez C.. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef][PubMed]
    [Google Scholar]
  6. Gutiérrez M. C., Castillo A. M., Kamekura M., Ventosa A.. ( 2008;). Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. . Int J Syst Evol Microbiol 58:, 2880–2884. [CrossRef][PubMed]
    [Google Scholar]
  7. Kamekura M.. ( 1993;). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland R. H., Hochstein L. I... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  8. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  9. Minegishi H., Mizuki T., Echigo A., Fukushima T., Kamekura M., Usami R.. ( 2008;). Acidophilic haloarchaeal strains are isolated from various solar salts. . Saline Syst 4:, 16. [CrossRef][PubMed]
    [Google Scholar]
  10. Minegishi H., Echigo A., Nagaoka S., Kamekura M., Usami R.. ( 2010;). Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. . Int J Syst Evol Microbiol 60:, 2513–2516. [CrossRef][PubMed]
    [Google Scholar]
  11. Minegishi H., Kamekura M., Kitajima-Ihara T., Nakasone K., Echigo A., Shimane Y., Usami R., Itoh T., Ihara K.. ( 2012;). Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. . Int J Syst Evol Microbiol 62:, 188–195. [CrossRef][PubMed]
    [Google Scholar]
  12. Oren A.. ( 2007;). Biodiversity in highly saline environments. . In Physiology and Biochemistry of Extremophiles, pp. 223–231. Edited by Gerday C., Glansdorff N... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  13. Oren A., Ventosa A., Grant W. D.. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  14. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  15. Silvestro D., Michalak I.. ( 2012;). raxmlGUI: a graphical front-end for RAxML. . Org Divers Evol 12:, 335–337. [CrossRef]
    [Google Scholar]
  16. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  17. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiology Today 33:, 152–155.
    [Google Scholar]
  18. Stamatakis A., Ludwig T., Meier H.. ( 2005;). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. . Bioinformatics 21:, 456–463. [CrossRef][PubMed]
    [Google Scholar]
  19. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  20. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  21. Yamauchi Y., Minegishi H., Echigo A., Shimane Y., Shimoshige H., Kamekura M., Itoh T., Doukyu N., Inoue A., Usami R.. ( 2013a;). Halarchaeum salinum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. . Int J Syst Evol Microbiol 63:, 1138–1142. [CrossRef][PubMed]
    [Google Scholar]
  22. Yamauchi Y., Minegishi H., Echigo A., Shimane Y., Kamekura M., Itoh T., Ohkuma M., Doukyu N., Inoue A., Usami R.. ( 2013b;). Halarchaeum rubridurum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt samples. . Int J Syst Evol Microbiol 63:, 3143–3147. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.054668-0
Loading
/content/journal/ijsem/10.1099/ijs.0.054668-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error