1887

Abstract

Two halophilic moderately acidophilic archaeal strains, MH1-136-2 and MH1-370-1 were isolated from commercial salt samples made from seawater in Japan and Indonesia, respectively. Cells of the two strains were pleomorphic and Gram-stain-negative. Strain MH1-136-2 was pink pigmented, while MH1-370-1 was orange–red pigmented. Strain MH1-136-2 was able to grow at 9–30 % (w/v) NaCl (with optimum, 21 % NaCl, w/v) at pH 4.5–6.2 (optimum, pH 5.2–5.5) and at 18–55 °C (optimum, 45 °C). Strain MH1-370-1 was able to grow at 12–30 % (w/v) NaCl (optimum, 18 %, w/v) at pH 4.2–6.0 (optimum, pH 5.2–5.5) and 20–50 °C (optimum, 45 °C). Strain MH1-136-2 required at least 1 mM Mg, while MH1-370-1 required at least 10 mM for growth. Both strains reduced nitrate and nitrite under aerobic conditions. The 16S rRNA gene sequences of strains MH1-136-2 and MH1-370-1 were identical, and the closest relative was MH1-16-3 with 98.3 % similarity. The level of DNA–DNA relatedness between these strains was 90.9 % and 92.4 % (reciprocally), while that between MH1-136-2 and MH1-52-1, MH1-34-1 and MH1-16-3 was 37.7 %, 44.3 % and 41.1 % (each an average), respectively. Based on the phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolates represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MH1-136-2 ( = JCM 16331 = CECT 7573) isolated from solar salt produced in Japan.

Funding
This study was supported by the:
  • , Japan Society for the Promotion of Science (JSPS) , (Award B 25840142)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.054668-0
2013-11-01
2021-02-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4202.html?itemId=/content/journal/ijsem/10.1099/ijs.0.054668-0&mimeType=html&fmt=ahah

References

  1. Cline S. W., Schalkwyk L. C., Doolittle W. F. ( 1989 ). Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. . J Bacteriol 171, 49874991.[PubMed]
    [Google Scholar]
  2. Dussault H. P. ( 1955 ). An improved technique for staining red halophilic bacteria. . J Bacteriol 70, 484485.[PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989 ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39, 224229. [CrossRef]
    [Google Scholar]
  4. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: An approach using the bootstrap. . Evolution 39, 783791. [CrossRef]
    [Google Scholar]
  5. Gonzalez C., Gutierrez C., Ramirez C. ( 1978 ). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24, 710715. [CrossRef] [PubMed]
    [Google Scholar]
  6. Gutiérrez M. C., Castillo A. M., Kamekura M., Ventosa A. ( 2008 ). Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. . Int J Syst Evol Microbiol 58, 28802884. [CrossRef] [PubMed]
    [Google Scholar]
  7. Kamekura M. ( 1993 ). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135161. Edited by Vreeland R. H., Hochstein L. I. . Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  8. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. & other authors ( 2007 ). clustal w and clustal_x version 2.0. . Bioinformatics 23, 29472948. [CrossRef] [PubMed]
    [Google Scholar]
  9. Minegishi H., Mizuki T., Echigo A., Fukushima T., Kamekura M., Usami R. ( 2008 ). Acidophilic haloarchaeal strains are isolated from various solar salts. . Saline Syst 4, 16. [CrossRef] [PubMed]
    [Google Scholar]
  10. Minegishi H., Echigo A., Nagaoka S., Kamekura M., Usami R. ( 2010 ). Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. . Int J Syst Evol Microbiol 60, 25132516. [CrossRef] [PubMed]
    [Google Scholar]
  11. Minegishi H., Kamekura M., Kitajima-Ihara T., Nakasone K., Echigo A., Shimane Y., Usami R., Itoh T., Ihara K. ( 2012 ). Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. . Int J Syst Evol Microbiol 62, 188195. [CrossRef] [PubMed]
    [Google Scholar]
  12. Oren A. ( 2007 ). Biodiversity in highly saline environments. . In Physiology and Biochemistry of Extremophiles, pp. 223231. Edited by Gerday C., Glansdorff N. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  13. Oren A., Ventosa A., Grant W. D. ( 1997 ). Proposed minimal standards for description of new taxa in the order Halobacteriales . . Int J Syst Bacteriol 47, 233238. [CrossRef]
    [Google Scholar]
  14. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  15. Silvestro D., Michalak I. ( 2012 ). raxmlGUI: a graphical front-end for RAxML. . Org Divers Evol 12, 335337. [CrossRef]
    [Google Scholar]
  16. Smibert R. M., Krieg N. R. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  17. Stackebrandt E., Ebers J. ( 2006 ). Taxonomic parameters revisited: tarnished gold standards. . Microbiology Today 33, 152155.
    [Google Scholar]
  18. Stamatakis A., Ludwig T., Meier H. ( 2005 ). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. . Bioinformatics 21, 456463. [CrossRef] [PubMed]
    [Google Scholar]
  19. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [CrossRef]
    [Google Scholar]
  20. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [CrossRef]
    [Google Scholar]
  21. Yamauchi Y., Minegishi H., Echigo A., Shimane Y., Shimoshige H., Kamekura M., Itoh T., Doukyu N., Inoue A., Usami R. ( 2013a ). Halarchaeum salinum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. . Int J Syst Evol Microbiol 63, 11381142. [CrossRef] [PubMed]
    [Google Scholar]
  22. Yamauchi Y., Minegishi H., Echigo A., Shimane Y., Kamekura M., Itoh T., Ohkuma M., Doukyu N., Inoue A., Usami R. ( 2013b ). Halarchaeum rubridurum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt samples. . Int J Syst Evol Microbiol 63, 31433147. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.054668-0
Loading
/content/journal/ijsem/10.1099/ijs.0.054668-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error