1887

Abstract

Three Gram-stain-positive bacterial strains, 11050, 7-19 and 11102, were isolated from traditional pickle and sourdough in Heilongjiang Province, China. These bacteria were characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, gene sequence analysis, gene sequence analysis, gene sequence analysis, fatty acid methyl ester (FAME) analysis, determination of DNA G+C content, DNA–DNA hybridization and an analysis of phenotypic features. Strain 11050 belonged to the species group and shared 98.0–98.4 % 16S rRNA gene sequence similarities and 84.7–88.9 % gene sequence similarities with type strains of subsp. , subsp. , , , and and had 75.9–80.7 % gene sequence similarities and 90.7–92.5 % gene sequence similarities with subsp. LMG 6907, subsp. LMG 9205, LMG 10755, LMG 16673, LMG 24284 and 3.1.1, respectively. Strain 7-19 was phylogenetically related to , and , having 94.1–96.7 % 16S rRNA gene sequence similarities, 71.5–82.3 % gene sequence similarities and 71.2–83.4 % gene sequence similarities with type strains of , and , respectively. Strain 11102 was phylogenetically related to , , and . Strain 11102 had 99.2 % 16S rRNA gene sequence similarity, 81.3 % gene sequence similarity and 96.1 % gene sequence similarity with LMG 22743, respectively. Strain 11102 shared 96.0–96.8 % 16S rRNA gene sequence similarities, 73.3–81.0 % gene sequence similarities and 74.6–76.9 % gene sequence similarities with type strains of , and , respectively. Based upon the data from polyphasic characterization obtained in the present study, three novel species, sp. nov., sp. nov. and sp. nov., are proposed and the type strains are 11050 ( = LMG 27194 = CCUG 62991), 7-19 ( = LMG 27191 = NCIMB 14832 = CCUG 62990) and 11102 ( = LMG 27192 = NCIMB 14833), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.054296-0
2013-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/12/4698.html?itemId=/content/journal/ijsem/10.1099/ijs.0.054296-0&mimeType=html&fmt=ahah

References

  1. An D., Cai S., Dong X.. ( 2006;). Actinomyces ruminicola sp. nov., isolated from cattle rumen. . Int J Syst Evol Microbiol 56:, 2043–2048. [CrossRef][PubMed]
    [Google Scholar]
  2. Bringel F., Castioni A., Olukoya D. K., Felis G. E., Torriani S., Dellaglio F.. ( 2005;). Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices. . Int J Syst Evol Microbiol 55:, 1629–1634. [CrossRef][PubMed]
    [Google Scholar]
  3. Bui T. P. N., Kim Y.-J., In J.-G., Yang D.-C.. ( 2011;). Lactobacillus koreensis sp. nov., isolated from the traditional Korean food kimchi. . Int J Syst Evol Microbiol 61:, 772–776. [CrossRef][PubMed]
    [Google Scholar]
  4. Chao S.-H., Kudo Y., Tsai Y.-C., Watanabe K.. ( 2012;). Lactobacillus futsaii sp. nov., isolated from fu-tsai and suan-tsai, traditional Taiwanese fermented mustard products. . Int J Syst Evol Microbiol 62:, 489–494. [CrossRef][PubMed]
    [Google Scholar]
  5. Curk M.-C., Hubert J.-C., Bringel F.. ( 1996;). Lactobacillus paraplantarum sp. nov., a new species related to Lactobacillus plantarum. . Int J Syst Bacteriol 46:, 595–598. [CrossRef][PubMed]
    [Google Scholar]
  6. De Bruyne K., Schillinger U., Caroline L., Boehringer B., Cleenwerck I., Vancanneyt M., De Vuyst L., Franz C. M. A. P., Vandamme P.. ( 2007;). Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. . Int J Syst Evol Microbiol 57:, 2952–2959. [CrossRef][PubMed]
    [Google Scholar]
  7. De Bruyne K., Camu N., De Vuyst L., Vandamme P.. ( 2009;). Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations. . Int J Syst Evol Microbiol 59:, 7–12. [CrossRef][PubMed]
    [Google Scholar]
  8. De Ley J.. ( 1970;). Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. . J Bacteriol 101:, 738–754.[PubMed]
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  10. De Vuyst L., Neysens P.. ( 2005;). The sourdough microflora: Biodiversity and metabolic interactions. . Trends Food Sci Technol 16:, 43–56. [CrossRef]
    [Google Scholar]
  11. De Vuyst L., Vancanneyt M.. ( 2007;). Biodiversity and identification of sourdough lactic acid bacteria. . Food Microbiol 24:, 120–127. [CrossRef][PubMed]
    [Google Scholar]
  12. Dong X., Xin Y., Jian W., Liu X., Ling D.. ( 2000;). Bifidobacterium thermacidophilum sp. nov., isolated from an anaerobic digester. . Int J Syst Evol Microbiol 50:, 119–125. [CrossRef][PubMed]
    [Google Scholar]
  13. Gu C. T., Wang F., Li C. Y., Liu F., Huo G. C.. ( 2012;). Lactobacillus xiangfangensis sp. nov., isolated from Chinese pickle. . Int J Syst Evol Microbiol 62:, 860–863. [CrossRef][PubMed]
    [Google Scholar]
  14. Gu C. T., Li C. Y., Yang L. J., Huo G. C.. ( 2013;). Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle. . Int J Syst Evol Microbiol (in press). [CrossRef][PubMed]
    [Google Scholar]
  15. Huang C.-H., Lee F.-L., Liou J.-S.. ( 2010;). Rapid discrimination and classification of the Lactobacillus plantarum group based on a partial dnaK sequence and DNA fingerprinting techniques. . Antonie van Leeuwenhoek 97:, 289–296. [CrossRef][PubMed]
    [Google Scholar]
  16. Kandler O., Weiss N.. ( 1986;). Genus Lactobacillus Beijerinck 1901, 212AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 1209–1234. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  17. Kim J., Kim J. Y., Kim M.-S., Roh S. W., Bae J.-W.. ( 2013;). Lactobacillus kimchiensis sp. nov., isolated from a fermented food. . Int J Syst Evol Microbiol 63:, 1355–1359. [CrossRef][PubMed]
    [Google Scholar]
  18. Kleynmans U., Heinzl H., Hammes W. P.. ( 1989;). Lactobacillus suebicus sp. nov., an obligately heterofermentative Lactobacillus species isolated from fruit mashes. . Syst Appl Microbiol 11:, 267–271. [CrossRef]
    [Google Scholar]
  19. Koort J., Murros A., Coenye T., Eerola S., Vandamme P., Sukura A., Björkroth J.. ( 2005;). Lactobacillus oligofermentans sp. nov., associated with spoilage of modified-atmosphere-packaged poultry products. . Appl Environ Microbiol 71:, 4400–4406. [CrossRef][PubMed]
    [Google Scholar]
  20. Kudo Y., Oki K., Watanabe K.. ( 2012;). Lactobacillus delbrueckii subsp. sunkii subsp. nov., isolated from sunki, a traditional Japanese pickle. . Int J Syst Evol Microbiol 62:, 2643–2649. [CrossRef][PubMed]
    [Google Scholar]
  21. Lee S. H., Park M. S., Jung J. Y., Jeon C. O.. ( 2012;). Leuconostoc miyukkimchii sp. nov., isolated from brown algae (Undaria pinnatifida) kimchi. . Int J Syst Evol Microbiol 62:, 1098–1103. [CrossRef][PubMed]
    [Google Scholar]
  22. Liang Z.-Q., Srinivasan S., Kim Y.-J., Kim H.-B., Wang H.-T., Yang D.-C.. ( 2011;). Lactobacillus kimchicus sp. nov., a β-glucosidase-producing bacterium isolated from kimchi. . Int J Syst Evol Microbiol 61:, 894–897. [CrossRef][PubMed]
    [Google Scholar]
  23. Liu B., Dong X.. ( 2002;). Lactobacillus pantheris sp. nov., isolated from faeces of a jaguar. . Int J Syst Evol Microbiol 52:, 1745–1748. [CrossRef][PubMed]
    [Google Scholar]
  24. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  25. Miyamoto M., Seto Y., Hao D. H., Teshima T., Sun Y. B., Kabuki T., Yao L. B., Nakajima H.. ( 2005;). Lactobacillus harbinensis sp. nov., consisted of strains isolated from traditional fermented vegetables ‘Suan cai’ in Harbin, Northeastern China and Lactobacillus perolens DSM 12745. . Syst Appl Microbiol 28:, 688–694. [CrossRef][PubMed]
    [Google Scholar]
  26. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J.. ( 2005;). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. . Microbiology 151:, 2141–2150. [CrossRef][PubMed]
    [Google Scholar]
  27. Naser S. M., Dawyndt P., Hoste B., Gevers D., Vandemeulebroecke K., Cleenwerck I., Vancanneyt M., Swings J.. ( 2007;). Identification of lactobacilli by pheS and rpoA gene sequence analyses. . Int J Syst Evol Microbiol 57:, 2777–2789. [CrossRef][PubMed]
    [Google Scholar]
  28. Okada S., Suzuki Y., Kozaki M.. ( 1979;). A new heterofermentative Lactobacillus species with meso-diaminopimelic acid in peptidoglycan, Lactobacillus vaccinostercus Kozaki and Okada sp. nov.. J Gen Appl Microbiol 25:, 215–221. [CrossRef]
    [Google Scholar]
  29. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  30. Sharpe M. E.. ( 1979;). Identification of lactic acid bacteria. . In Identification Methods for Microbiologists (Society for Applied Bacteriology Technical Series vol. 14), pp. 233–259. Edited by Skinner F. A., Lovelock D. W... London:: Academic Press;.
    [Google Scholar]
  31. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  33. Tanasupawat S., Pakdeeto A., Thawai C., Yukphan P., Okada S.. ( 2007;). Identification of lactic acid bacteria from fermented tea leaves (miang) in Thailand and proposals of Lactobacillus thailandensis sp. nov., Lactobacillus camelliae sp. nov., and Pediococcus siamensis sp. nov.. J Gen Appl Microbiol 53:, 7–15. [CrossRef][PubMed]
    [Google Scholar]
  34. Tohno M., Kitahara M., Uegaki R., Irisawa T., Ohkuma M., Tajima K.. ( 2013;). Lactobacillus hokkaidonensis sp. nov., isolated from subarctic timothy grass (Phleum pratense L.) silage. . Int J Syst Evol Microbiol 63:, 2526–2531. [CrossRef][PubMed]
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  36. Weiss N., Schillinger U., Laternser M., Kandler O.. ( 1981;). Lactobacillus sharpeae sp. nov. and Lactobacillus agilis sp. nov., two new species of homofermentative, meso-diaminopimelic acid-containing lactobacilli isolated from sewage. . Zbl Bakt Hyg I Abt Orig C 2:, 242–253.
    [Google Scholar]
  37. Zanoni P., Farrow J. A. E., Phillips B. A., Collins M. D.. ( 1987;). Lactobacillus pentosus (Fred, Peterson, and Anderson) sp. nov., nom. rev.. Int J Syst Bacteriol 37:, 339–341. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.054296-0
Loading
/content/journal/ijsem/10.1099/ijs.0.054296-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error