1887

Abstract

First-generation Sanger DNA sequencing revolutionized science over the past three decades and the current next-generation sequencing (NGS) technology has opened the doors to the next phase in the sequencing revolution. Using NGS, scientists are able to sequence entire genomes and to generate extensive transcriptome data from diverse photosynthetic eukaryotes in a timely and cost-effective manner. Genome data in particular shed light on the complicated evolutionary history of algae that form the basis of the food chain in many environments. In the Eukaryotic Tree of Life, the fact that photosynthetic lineages are positioned in four supergroups has important evolutionary consequences. We now know that the story of eukaryotic photosynthesis unfolds with a primary endosymbiosis between an ancestral heterotrophic protist and a captured cyanobacterium that gave rise to the glaucophytes, red algae and Viridiplantae (green algae and land plants). These primary plastids were then transferred to other eukaryotic groups through secondary endosymbiosis. A red alga was captured by the ancestor(s) of the stramenopiles, alveolates (dinoflagellates, apicomplexa, chromeridae), cryptophytes and haptophytes, whereas green algae were captured independently by the common ancestors of the euglenophytes and chlorarachniophytes. A separate case of primary endosymbiosis is found in the filose amoeba , which has at least nine heterotrophic sister species. genome data provide detailed insights into the early stages of plastid establishment. Therefore, genome data produced by NGS have provided many novel insights into the taxonomy, phylogeny and evolutionary history of photosynthetic eukaryotes.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.054221-0
2014-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/333.html?itemId=/content/journal/ijsem/10.1099/ijs.0.054221-0&mimeType=html&fmt=ahah

References

  1. Adl S. M., Simpson A. G. B., Farmer M. A., Andersen R. A., Anderson O. R., Barta J. R., Bowser S. S., Brugerolle G., Fensome R. A.. & other authors ( 2005;). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. . J Eukaryot Microbiol 52:, 399–451. [CrossRef][PubMed]
    [Google Scholar]
  2. Adl S. M., Simpson A. G. B., Lane C. E., Lukeš J., Bass D., Bowser S. S., Brown M. W., Burki F., Dunthorn M.. & other authors ( 2012;). The revised classification of eukaryotes. . J Eukaryot Microbiol 59:, 429–493. [CrossRef][PubMed]
    [Google Scholar]
  3. Altenhoff A. M., Studer R. A., Robinson-Rechavi M., Dessimoz C.. ( 2012;). Resolving the ortholog conjecture: orthologs tend to be weakly, but significantly, more similar in function than paralogs. . PLOS Comput Biol 8:, e1002514. [CrossRef][PubMed]
    [Google Scholar]
  4. Armbrust E. V., Berges J. A., Bowler C., Green B. R., Martinez D., Putnam N. H., Zhou S., Allen A. E., Apt K. E.. & other authors ( 2004;). The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. . Science 306:, 79–86. [CrossRef][PubMed]
    [Google Scholar]
  5. Bhattacharya D., Helmchen T., Melkonian M.. ( 1995;). Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphina and the Chlorarachniophyta. . J Eukaryot Microbiol 42:, 65–69. [CrossRef][PubMed]
    [Google Scholar]
  6. Bhattacharya D., Yoon H. S., Hackett J. D.. ( 2004;). Photosynthetic eukaryotes unite: endosymbiosis connects the dots. . Bioessays 26:, 50–60. [CrossRef][PubMed]
    [Google Scholar]
  7. Bhattacharya D., Price D. C., Yoon H. S., Yang E. C., Poulton N. J., Andersen R. A., Das S. P.. ( 2012;). Single cell genome analysis supports a link between phagotrophy and primary plastid endosymbiosis. . Sci Rep 2:, 356. [CrossRef][PubMed]
    [Google Scholar]
  8. Bhattacharya D., Price D. C., Chan C. X., Qiu H., Rose N., Ball S., Weber A. P. M., Arias M. C., Henrissat B.. & other authors ( 2013;). Genome of the red alga Porphyridium purpureum. . Nat Commun 4:, 1941. [CrossRef][PubMed]
    [Google Scholar]
  9. Biegala I. C., Not F., Vaulot D., Simon N.. ( 2003;). Quantitative assessment of picoeukaryotes in the natural environment by using taxon-specific oligonucleotide probes in association with tyramide signal amplification-fluorescence in situ hybridization and flow cytometry. . Appl Environ Microbiol 69:, 5519–5529. [CrossRef][PubMed]
    [Google Scholar]
  10. Blanc G., Duncan G., Agarkova I., Borodovsky M., Gurnon J., Kuo A., Lindquist E., Lucas S., Pangilinan J.. & other authors ( 2010;). The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. . Plant Cell 22:, 2943–2955. [CrossRef][PubMed]
    [Google Scholar]
  11. Blanc G., Agarkova I., Grimwood J., Kuo A., Brueggeman A., Dunigan D. D., Gurnon J., Ladunga I., Lindquist E.. & other authors ( 2012;). The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. . Genome Biol 13:, R39. [CrossRef][PubMed]
    [Google Scholar]
  12. Bowler C., Allen A. E., Badger J. H., Grimwood J., Jabbari K., Kuo A., Maheswari U., Martens C., Maumus F.. & other authors ( 2008;). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. . Nature 456:, 239–244. [CrossRef][PubMed]
    [Google Scholar]
  13. Brouard J.-S., Otis C., Lemieux C., Turmel M.. ( 2008;). Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae): unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer. . BMC Genomics 9:, 290. [CrossRef][PubMed]
    [Google Scholar]
  14. Brouard J. S., Otis C., Lemieux C., Turmel M.. ( 2010;). The exceptionally large chloroplast genome of the green alga Floydiella terrestris illuminates the evolutionary history of the Chlorophyceae. . Genome Biol Evol 2:, 240–256. [CrossRef][PubMed]
    [Google Scholar]
  15. Brower A. V. Z., De Salle R., Vogler A.. ( 1996;). Gene trees, species trees, and systematic: A cladistic perspective. . Annu Rev Ecol Syst 27:, 423–450. [CrossRef]
    [Google Scholar]
  16. Brown W. M., George M. J. R. Jr, Wilson A. C.. ( 1979;). Rapid evolution of animal mitochondrial DNA. . Proc Natl Acad Sci USA 76:, 1967–1971. [CrossRef][PubMed]
    [Google Scholar]
  17. Burki F., Shalchian-Tabrizi K., Minge M., Skjaeveland A., Nikolaev S. I., Jakobsen K. S., Pawlowski J.. ( 2007;). Phylogenomics reshuffles the eukaryotic supergroups. . PLoS ONE 2:, e790. [CrossRef][PubMed]
    [Google Scholar]
  18. Burki F., Shalchian-Tabrizi K., Pawlowski J.. ( 2008;). Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. . Biol Lett 4:, 366–369. [CrossRef][PubMed]
    [Google Scholar]
  19. Burki F., Inagaki Y., Bråte J., Archibald J. M., Keeling P. J., Cavalier-Smith T., Sakaguchi M., Hashimoto T., Horak A.. & other authors ( 2009;). Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, telonemia and centroheliozoa, are related to photosynthetic chromalveolates. . Genome Biol Evol 1:, 231–238. [CrossRef][PubMed]
    [Google Scholar]
  20. Burki F., Okamoto N., Pombert J. F., Keeling P. J.. ( 2012;). The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. . Proc Biol Sci 279:, 2246–2254. [CrossRef][PubMed]
    [Google Scholar]
  21. Butterfield N. J.. ( 2000;). Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. . Paleobiology 26:, 386–404. [CrossRef]
    [Google Scholar]
  22. Cavalier-Smith T.. ( 1999;). Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. . J Eukaryot Microbiol 46:, 347–366. [CrossRef][PubMed]
    [Google Scholar]
  23. Cavalier-Smith T., Allsopp M. T., Chao E. E.. ( 1994;). Chimeric conundra: are nucleomorphs and chromists monophyletic or polyphyletic?. Proc Natl Acad Sci USA 91:, 11368–11372. [CrossRef][PubMed]
    [Google Scholar]
  24. Chan C. X., Reyes-Prieto A., Bhattacharya D.. ( 2011;). Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution. . PLoS ONE 6:, e29138. [CrossRef][PubMed]
    [Google Scholar]
  25. Chu K. H., Qi J., Yu Z. G., Anh V.. ( 2004;). Origin and phylogeny of chloroplasts revealed by a simple correlation analysis of complete genomes. . Mol Biol Evol 21:, 200–206. [CrossRef][PubMed]
    [Google Scholar]
  26. Cock J. M., Sterck L., Rouzé P., Scornet D., Allen A. E., Amoutzias G., Anthouard V., Artiguenave F., Aury J.-M.. & other authors ( 2010;). The Ectocarpus genome and the independent evolution of multicellularity in brown algae. . Nature 465:, 617–621. [CrossRef][PubMed]
    [Google Scholar]
  27. Collén J., Porcel B., Carré W., Ball S. G., Chaparro C., Tonon T., Barbeyron T., Michel G., Noel B.. & other authors ( 2013;). Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. . Proc Natl Acad Sci USA 110:, 5247–5252. [CrossRef][PubMed]
    [Google Scholar]
  28. Conklin K. Y., Kurihara A., Sherwood A. R.. ( 2009;). A molecular method for identification of the morphologically plastic invasive algal genera Eucheuma and Kappaphycus (Rhodophyta, Gigaltinales) in Hawaii. . J Appl Phycol 21:, 691–699. [CrossRef]
    [Google Scholar]
  29. Countway P. D., Caron D. A.. ( 2006;). Abundance and distribution of Ostreococcus sp. in the San Pedro Channel, California, as revealed by quantitative PCR. . Appl Environ Microbiol 72:, 2496–2506. [CrossRef][PubMed]
    [Google Scholar]
  30. Curtis B. A., Tanifuji G., Burki F., Gruber A., Irimia M., Maruyama S., Arias M. C., Ball S. G., Gile G. H.. & other authors ( 2012;). Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. . Nature 492:, 59–65. [CrossRef][PubMed]
    [Google Scholar]
  31. Cuvelier M. L., Allen A. E., Monier A., McCrow J. P., Messié M., Tringe S. G., Woyke T., Welsh R. M., Ishoey T.. & other authors ( 2010;). Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. . Proc Natl Acad Sci USA 107:, 14679–14684. [CrossRef][PubMed]
    [Google Scholar]
  32. DeLong E. F.. ( 2009;). The microbial ocean from genomes to biomes. . Nature 459:, 200–206. [CrossRef][PubMed]
    [Google Scholar]
  33. DePriest M. S., Bhattacharya D., López-Bautista J. M.. ( 2013;). The plastid genome of the red macroalga Grateloupia taiwanensis (Halymeniaceae). . PLoS ONE 8:, e68246. [CrossRef][PubMed]
    [Google Scholar]
  34. Derelle E., Ferraz C., Rombauts S., Rouzé P., Worden A. Z., Robbens S., Partensky F., Degroeve S., Echeynié S.. & other authors ( 2006;). Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. . Proc Natl Acad Sci USA 103:, 11647–11652. [CrossRef][PubMed]
    [Google Scholar]
  35. Deschamps P., Moreira D.. ( 2009;). Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes. . Mol Biol Evol 26:, 2745–2753. [CrossRef][PubMed]
    [Google Scholar]
  36. Díez B., Pedrós-Alió C., Massana R.. ( 2001;). Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. . Appl Environ Microbiol 67:, 2932–2941. [CrossRef][PubMed]
    [Google Scholar]
  37. Douglas S., Zauner S., Fraunholz M., Beaton M., Penny S., Deng L. T., Wu X., Reith M., Cavalier-Smith T., Maier U. G.. ( 2001;). The highly reduced genome of an enslaved algal nucleus. . Nature 410:, 1091–1096. [CrossRef][PubMed]
    [Google Scholar]
  38. Doyle J. J.. ( 1997;). Trees within trees: genes and species, molecules and morphology. . Syst Biol 46:, 537–553. [CrossRef][PubMed]
    [Google Scholar]
  39. Fuller N. J., Campbell C., Allen D. J., Pitt F. D., Zwirglmaier K., Le Gall F., Vaulot D., Scanlan D. J.. ( 2006;). Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids. . Aquat Microb Ecol 43:, 79–93. [CrossRef]
    [Google Scholar]
  40. Gibbs S. P.. ( 1978;). The chloroplasts of Euglena may have evolved from symbiotic green algae. . Can J Bot 56:, 2883–2889. [CrossRef]
    [Google Scholar]
  41. Glenn T. C.. ( 2011;). Field guide to next-generation DNA sequencers. . Mol Ecol Resour 11:, 759–769. [CrossRef][PubMed]
    [Google Scholar]
  42. Glöckner G., Rosenthal A., Valentin K.. ( 2000;). The structure and gene repertoire of an ancient red algal plastid genome. . J Mol Evol 51:, 382–390.[PubMed]
    [Google Scholar]
  43. Gobler C. J., Berry D. L., Dyhrman S. T., Wilhelm S. W., Salamov A., Lobanov A. V., Zhang Y., Collier J. L., Wurch L. L.. & other authors ( 2011;). Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. . Proc Natl Acad Sci U S A 108:, 4352–4357. [CrossRef][PubMed]
    [Google Scholar]
  44. Gould S. B.. ( 2012;). Evolutionary genomics: Algae’s complex origins. . Nature 492:, 46–48. [CrossRef][PubMed]
    [Google Scholar]
  45. Graham L. E., Wilcox L. W.. ( 2000;). Algae. Upper Saddle River, NJ:: Prentice Hall;.
    [Google Scholar]
  46. Hackett J. D., Yoon H. S., Li S., Reyes-Prieto A., Rümmele S. E., Bhattacharya D.. ( 2007;). Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. . Mol Biol Evol 24:, 1702–1713. [CrossRef][PubMed]
    [Google Scholar]
  47. Hagopian J. C., Reis M., Kitajima J. P., Bhattacharya D., de Oliveira M. C.. ( 2004;). Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of rhodoplasts and their relationship to other plastids. . J Mol Evol 59:, 464–477. [CrossRef][PubMed]
    [Google Scholar]
  48. Hallick R. B., Hong L., Drager R. G., Favreau M. R., Monfort A., Orsat B., Spielmann A., Stutz E.. ( 1993;). Complete sequence of Euglena gracilis chloroplast DNA. . Nucleic Acids Res 21:, 3537–3544. [CrossRef][PubMed]
    [Google Scholar]
  49. Hannah F., Rogerson A., Anderson O. R.. ( 1996;). A description of Paulinella indentata. n. sp. (Filosea: Euglyphina) from subtidal coastal benthic sediments. . J Eukaryot Microbiol 43:, 1–4. [CrossRef]
    [Google Scholar]
  50. Harris, T., Buzby, P., Jarosz, M., Gill, M., Weiss, H. & Lapidus, S. (2007). Optical train and method for TIRF single molecule detection and analysis. US patent application 20070070349.
  51. Harrison N., Kidner C. A.. ( 2011;). Next-generation sequencing and systematics: What can a billon base pairs of DNA sequence data do for you?. Taxon 60:, 1552–1566.
    [Google Scholar]
  52. Huang J., Gogarten J. P.. ( 2007;). Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids?. Genome Biol 8:, R99. [CrossRef][PubMed]
    [Google Scholar]
  53. Janouškovec J., Liu S.-L., Martone P. T., Carré W., Leblanc C., Collén J., Keeling P. J.. ( 2013;). Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. . PLoS ONE 8:, e59001. [CrossRef][PubMed]
    [Google Scholar]
  54. Johnson P. W., Hargraves P.E., Sieburth J. M.. ( 1988;). Ultrastructure and ecology of Calycomonas ovalis Wulff, 1919, (Chrysophyceae) and its redescription as a testate rhizopod, Paulinella ovalis n. comb. (Filosea: Euglyphina). . J Protozool 35:, 618–626. [CrossRef]
    [Google Scholar]
  55. Kim E., Graham L. E.. ( 2008;). EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata. . PLoS ONE 3:, e2621. [CrossRef][PubMed]
    [Google Scholar]
  56. Kim K. M., Yang E. C., Kim J. H., Nelson W. A., Yoon H. S.. ( 2013a;). Complete mitochondrial genome of a rhodolith, Sporolithon durum (Sporolithales, Rhodophyta). . Mitochondrial DNA (in press).[PubMed]
    [Google Scholar]
  57. Kim K. M., Yang E. C., Yi G., Yoon H. S.. ( 2013b;). Complete mitochondrial genome of sublittoral macroalga Rhodymenia pseudopalmata (Rhodymeniales, Rhodophyta). . Mitochondrial DNA (in press).[PubMed]
    [Google Scholar]
  58. Kim S. Y., Yang E. C., Boo S. M., Yoon H. S.. ( 2013c;). Complete mitochondrial genome of the marine red alga Grateloupia angusta (Halymeniales). . Mitochondrial DNA (in press). [CrossRef][PubMed]
    [Google Scholar]
  59. Korlach J., Marks P. J., Cicero R. L., Gray J. J., Murphy D. L., Roitman D. B., Pham T. T., Otto G. A., Foquet M., Turner S. W.. ( 2008;). Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. . Proc Natl Acad Sci USA 105:, 1176–1181. [CrossRef][PubMed]
    [Google Scholar]
  60. Lane C. E., van den Heuvel K., Kozera C., Curtis B. A., Parsons B. J., Bowman S., Archibald J. M.. ( 2007;). Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. . Proc Natl Acad Sci USA 104:, 19908–19913. [CrossRef][PubMed]
    [Google Scholar]
  61. Lauterborn R.. ( 1895;). Protozoenstudien II. Paulinella chromatophora nov. gen., nov. spec., ein beschalter Rhizopode des Sußwassers mit blaugrunen chromatophorenartigen Einschlussen. . Z Wiss Zool 59:, 537–544. (In German).
    [Google Scholar]
  62. Le Gall L., Saunders G. W.. ( 2007;). A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the new red algal subclass Corallinophycidae. . Mol Phylogenet Evol 43:, 1118–1130. [CrossRef][PubMed]
    [Google Scholar]
  63. Lemieux C., Otis C., Turmel M.. ( 2000;). Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. . Nature 403:, 649–652. [CrossRef][PubMed]
    [Google Scholar]
  64. Lommer M., Specht M., Roy A. S., Kraemer L., Andreson R., Gutowska M. A., Wolf J., Bergner S. V., Schilhabel M. B.. & other authors ( 2012;). Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. . Genome Biol 13:, R66. [CrossRef][PubMed]
    [Google Scholar]
  65. F., W., Tian C., Wang G., Niu J., Pan G., Hu S.. ( 2011;). The Bryopsis hypnoides plastid genome: multimeric forms and complete nucleotide sequence. . PLoS ONE 6:, e14663. [CrossRef][PubMed]
    [Google Scholar]
  66. Ludwig M., Gibbs S. P.. ( 1987;). Are the nucleomorphs of cryptomonads and Chlorarachnion the vestigial nuclei of eukaryotic endosymbionts?. Ann N Y Acad Sci 503: (1 Endocytobiolo), 198–211. [CrossRef]
    [Google Scholar]
  67. Man-Aharonovich D., Philosof A., Kirkup B. C., Le Gall F., Yogev T., Berman-Frank I., Polz M. F., Vaulot D., Béjà O.. ( 2010;). Diversity of active marine picoeukaryotes in the Eastern Mediterranean Sea unveiled using photosystem-II psbA transcripts. . ISME J 4:, 1044–1052. [CrossRef][PubMed]
    [Google Scholar]
  68. Marin B., Nowack E. C., Melkonian M.. ( 2005;). A plastid in the making: evidence for a second primary endosymbiosis. . Protist 156:, 425–432. [CrossRef][PubMed]
    [Google Scholar]
  69. Martin W. F., Müller M.. ( 1998;). The hydrogen hypothesis for the first eukaryote. . Nature 392:, 37–41. [CrossRef][PubMed]
    [Google Scholar]
  70. Massana R., Karniol B., Pommier T., Bodaker I., Béjà O.. ( 2008;). Metagenomic retrieval of a ribosomal DNA repeat array from an uncultured marine alveolate. . Environ Microbiol 10:, 1335–1343. [CrossRef][PubMed]
    [Google Scholar]
  71. Matsuzaki M., Misumi O., Shin-I T., Maruyama S., Takahara M., Miyagishima S. Y., Mori T., Nishida K., Yagisawa F.. & other authors ( 2004;). Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. . Nature 428:, 653–657. [CrossRef][PubMed]
    [Google Scholar]
  72. McDonald S. M., Sarno D., Scanlan D. J., Zingone A.. ( 2007;). Genetic diversity of eukaryotic ultraphytoplankton in the Gulf of Naples during an annual cycle. . Aquat Microb Ecol 50:, 75–89. [CrossRef]
    [Google Scholar]
  73. McFadden G. I., Gilson P. R.. ( 1995;). Something borrowed, something green: lateral transfer of chloroplasts by secondary endosymbiosis. . Trends Ecol Evol 10:, 12–17. [CrossRef][PubMed]
    [Google Scholar]
  74. McFadden G. I., Gilson P. R., Hofmann C. J., Adcock G. J., Maier U. G.. ( 1994;). Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. . Proc Natl Acad Sci U S A 91:, 3690–3694. [CrossRef][PubMed]
    [Google Scholar]
  75. Merchant S. S., Prochnik S. E., Vallon O., Harris E. H., Karpowicz S. J., Witman G. B., Terry A., Salamov A., Fritz-Laylin L. K.. & other authors ( 2007;). The Chlamydomonas genome reveals the evolution of key animal and plant functions. . Science 318:, 245–250. [CrossRef][PubMed]
    [Google Scholar]
  76. Mereschkowski C.. ( 1905;). Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. . Biol Centralbl 25:, 593–604. (In German).
    [Google Scholar]
  77. Moustafa A., Beszteri B., Maier U. G., Bowler C., Valentin K., Bhattacharya D.. ( 2009;). Genomic footprints of a cryptic plastid endosymbiosis in diatoms. . Science 324:, 1724–1726. [CrossRef][PubMed]
    [Google Scholar]
  78. Nakayama T., Ishida K.. ( 2009;). Another acquisition of a primary photosynthetic organelle is underway in Paulinella chromatophora.. Curr Biol 19:, R284–R285. [CrossRef][PubMed]
    [Google Scholar]
  79. Nicholls K. H.. ( 2009;). A multivariate statistical evaluation of the “acolla-complex” of Corythionella species, including a description of C. darwini n. sp. (Rhizopoda: Filosea or Rhizaria: Cercozoa). . Eur J Protistol 45:, 183–192. [CrossRef][PubMed]
    [Google Scholar]
  80. Not F., Latasa M., Marie D., Cariou T., Vaulot D., Simon N.. ( 2004;). A single species, Micromonas pusilla (Prasinophyceae), dominates the eukaryotic picoplankton in the Western English Channel. . Appl Environ Microbiol 70:, 4064–4072. [CrossRef][PubMed]
    [Google Scholar]
  81. Not F., Valentin K., Romari K., Lovejoy C., Massana R., Töbe K., Vaulot D., Medlin L. K.. ( 2007;). Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes. . Science 315:, 253–255. [CrossRef][PubMed]
    [Google Scholar]
  82. Nowack E. C. M., Grossman A. R.. ( 2012;). Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. . Proc Natl Acad Sci USA 109:, 5340–5345. [CrossRef][PubMed]
    [Google Scholar]
  83. Nowack E. C., Melkonian M., Glöckner G.. ( 2008;). Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. . Curr Biol 18:, 410–418. [CrossRef][PubMed]
    [Google Scholar]
  84. Nowack E. C., Vogel H., Groth M., Grossman A. R., Melkonian M., Glöckner G.. ( 2011;). Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. . Mol Biol Evol 28:, 407–422. [CrossRef][PubMed]
    [Google Scholar]
  85. Okamoto N., Chantangsi C., Horák A., Leander B. S., Keeling P. J.. ( 2009;). Molecular phylogeny and description of the novel katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov.. PLoS ONE 4:, e7080. [CrossRef][PubMed]
    [Google Scholar]
  86. Palenik B., Grimwood J., Aerts A., Rouzé P., Salamov A., Putnam N., Dupont C., Jorgensen R., Derelle E.. & other authors ( 2007;). The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. . Proc Natl Acad Sci USA 104:, 7705–7710. [CrossRef][PubMed]
    [Google Scholar]
  87. Parfrey L. W., Grant J., Tekle Y. I., Lasek-Nesselquist E., Morrison H. G., Sogin M. L., Patterson D. J., Katz L. A.. ( 2010;). Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. . Syst Biol 59:, 518–533. [CrossRef][PubMed]
    [Google Scholar]
  88. Parfrey L. W., Lahr D. J. G., Knoll A. H., Katz L. A.. ( 2011;). Estimating the timing of early eukaryotic diversification with multigene molecular clocks. . Proc Natl Acad Sci USA 108:, 13624–13629. [CrossRef][PubMed]
    [Google Scholar]
  89. Piganeau G., Desdevises Y., Derelle E., Moreau H.. ( 2008;). Picoeukaryotic sequences in the Sargasso sea metagenome. . Genome Biol 9:, R5. [CrossRef][PubMed]
    [Google Scholar]
  90. Price D. C., Chan C. X., Yoon H. S., Yang E. C., Qiu H., Weber A. P. M., Schwacke R., Gross J., Blouin N. A.. & other authors ( 2012;). Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. . Science 335:, 843–847. [CrossRef][PubMed]
    [Google Scholar]
  91. Prochnik S. E., Umen J., Nedelcu A. M., Hallmann A., Miller S. M., Nishii I., Ferris P., Kuo A., Mitros T.. & other authors ( 2010;). Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. . Science 329:, 223–226. [CrossRef][PubMed]
    [Google Scholar]
  92. Pröschold T., Harris E. H., Coleman A. W.. ( 2005;). Portrait of a species: Chlamydomonas reinhardtii. . Genetics 170:, 1601–1610. [CrossRef][PubMed]
    [Google Scholar]
  93. Pushkarev D., Neff N. F., Quake S. R.. ( 2009;). Single-molecule sequencing of an individual human genome. . Nat Biotechnol 27:, 847–850. [CrossRef][PubMed]
    [Google Scholar]
  94. Qiu H., Yang E. C., Bhattacharya D., Yoon H. S.. ( 2012;). Ancient gene paralogy may mislead inference of plastid phylogeny. . Mol Biol Evol 29:, 3333–3343. [CrossRef][PubMed]
    [Google Scholar]
  95. Qiu H., Yoon H. S., Bhattacharya D.. ( 2013a;). Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes. . Front Plant Sci 4:, 366. [CrossRef][PubMed]
    [Google Scholar]
  96. Qiu H., Price D. C., Weber A. P. M., Reeb V., Yang E. C., Lee J. M., Kim S. Y., Yoon H. S., Bhattacharya D.. ( 2013b;). Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea. . Curr Biol 23:, R865–R866. [CrossRef][PubMed]
    [Google Scholar]
  97. Raymond J. A., Kim H. J.. ( 2012;). Possible role of horizontal gene transfer in the colonization of sea ice by algae. . PLoS ONE 7:, e35968. [CrossRef][PubMed]
    [Google Scholar]
  98. Read B. A., Kegel J., Klute M. J., Kuo A., Lefebvre S. C., Maumus F., Mayer C., Miller J., Monier A.. & other authors ( 2013;). Pan genome of the phytoplankton Emiliania underpins its global distribution. . Nature 499:, 209–213. [CrossRef][PubMed]
    [Google Scholar]
  99. Reyes-Prieto A., Bhattacharya D.. ( 2007;). Phylogeny of Calvin cycle enzymes supports Plantae monophyly. . Mol Phylogenet Evol 45:, 384–391. [CrossRef][PubMed]
    [Google Scholar]
  100. Reyes-Prieto A., Weber A. P., Bhattacharya D.. ( 2007;). The origin and establishment of the plastid in algae and plants. . Annu Rev Genet 41:, 147–168. [CrossRef][PubMed]
    [Google Scholar]
  101. Reyes-Prieto A., Yoon H. S., Moustafa A., Yang E. C., Andersen R. A., Boo S. M., Nakayama T., Ishida K., Bhattacharya D.. ( 2010;). Differential gene retention in plastids of common recent origin. . Mol Biol Evol 27:, 1530–1537. [CrossRef][PubMed]
    [Google Scholar]
  102. Rice D. W., Palmer J. D.. ( 2006;). An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. . BMC Biol 4:, 31. [CrossRef][PubMed]
    [Google Scholar]
  103. Rodríguez-Ezpeleta N., Brinkmann H., Burey S. C., Roure B., Burger G., Löffelhardt W., Bohnert H. J., Philippe H., Lang B. F.. ( 2005;). Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. . Curr Biol 15:, 1325–1330. [CrossRef][PubMed]
    [Google Scholar]
  104. Sagan L.. ( 1967;). On the origin of mitosing cells. . J Theor Biol 14:, 225–274. [CrossRef][PubMed]
    [Google Scholar]
  105. Sanger F., Nicklen S., Coulson A. R.. ( 1977;). DNA sequencing with chain-terminating inhibitors. . Proc Natl Acad Sci USA 74:, 5463–5467. [CrossRef][PubMed]
    [Google Scholar]
  106. Schönknecht G., Chen W. H., Ternes C. M., Barbier G. G., Shrestha R. P., Stanke M., Bräutigam A., Baker B. J., Banfield J. F.. & other authors ( 2013;). Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. . Science 339:, 1207–1210. [CrossRef][PubMed]
    [Google Scholar]
  107. Shi X. L., Lepère C., Scanlan D. J., Vaulot D.. ( 2011;). Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean. . PLoS ONE 6:, e18979. [CrossRef][PubMed]
    [Google Scholar]
  108. Tada N., Shibata S., Otsuka S., Namba K., Oyaizu H.. ( 1999;). Comparison of gene arrangements of chloroplasts between two centric diatoms, Skeletonema costatum and Odontella sinensis. . DNA Seq 10:, 343–347.[PubMed]
    [Google Scholar]
  109. Tirichine L., Bowler C.. ( 2011;). Decoding algal genomes: tracing back the history of photosynthetic life on Earth. . Plant J 66:, 45–57. [CrossRef][PubMed]
    [Google Scholar]
  110. Turmel M., Otis C., Lemieux C.. ( 1999;). The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. . Proc Natl Acad Sci USA 96:, 10248–10253. [CrossRef][PubMed]
    [Google Scholar]
  111. Turmel M., Otis C., Lemieux C.. ( 2002;). The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. . Proc Natl Acad Sci USA 99:, 11275–11280. [CrossRef][PubMed]
    [Google Scholar]
  112. Vahrenholz C., Riemen G., Pratje E., Dujon B., Michaelis G.. ( 1993;). Mitochondrial DNA of Chlamydomonas reinhardtii: the structure of the ends of the linear 15.8-kb genome suggests mechanisms for DNA replication. . Curr Genet 24:, 241–247. [CrossRef][PubMed]
    [Google Scholar]
  113. Vaulot D., Eikrem W., Viprey M., Moreau H.. ( 2008;). The diversity of small eukaryotic phytoplankton ≤3 µm) in marine ecosystems. . FEMS Microbiol Rev 32:, 795–820. [CrossRef][PubMed]
    [Google Scholar]
  114. Vellai T., Takács K., Vida G.. ( 1998;). A new aspect to the origin and evolution of eukaryotes. . J Mol Evol 46:, 499–507. [CrossRef][PubMed]
    [Google Scholar]
  115. Veluppillai J. M., Jacobs M. A., Duplessis M. R., Choi L., Cattolico R. A.. ( 2003;). The chloroplast genome of the toxic stramenopile Heterosigma akashiwa (Raphidophyceae). . J Phycol 39: (Issue Suppl. s1), 57. [CrossRef]
    [Google Scholar]
  116. Venter J. C., Remington K., Heidelberg J. F., Halpern A. L., Rusch D., Eisen J. A., Wu D., Paulsen I., Nelson K. E.. & other authors ( 2004;). Environmental genome shotgun sequencing of the Sargasso Sea. . Science 304:, 66–74. [CrossRef][PubMed]
    [Google Scholar]
  117. Verbruggen H., Maggs C. A., Saunders G. W., Le Gall L., Yoon H. S., De Clerck O.. ( 2010;). Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. . BMC Evol Biol 10:, 16. [CrossRef][PubMed]
    [Google Scholar]
  118. Vørs N.. ( 1993;). Marine heterotrophic amoebae, flagellates and heliozoa from Belize (Central America) and Tenerife (Canary Islands), with descriptions of new species, Luffisphaera bulbochaete n. sp., L. longihastis n. sp., L. Turriformis n. sp. and Paulinella intermedia n. sp.. J Eukaryot Microbiol 40:, 272–287. [CrossRef]
    [Google Scholar]
  119. Wang X., Shao Z., Fu W., Yao J., Hu Q., Duan D.. ( 2013;). Chloroplast genome of one brown seaweed, Saccharina japonica (Laminariales, Phaeophyta): its structural features and phylogenetic analyses with other photosynthetic plastids. . Mar Genomics 10:, 1–9. [CrossRef][PubMed]
    [Google Scholar]
  120. Waterhouse R. M., Zdobnov E. M., Tegenfeldt F., Li J., Kriventseva E. V.. ( 2011;). OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011. . Nucleic Acids Res 39: (Database issue), D283–D288. [CrossRef][PubMed]
    [Google Scholar]
  121. Wilson A. C., Cann R. L., Carr S. M., Matthew G., Gyllensten U. B., Helm-Bychowski K. M., Higuchi R. G., Palumbi S. T., Prager E. M.. & other authors ( 1985;). Mitochondrial DNA and two perspectives on evolutionary genetics. . Biol J Linn Soci 26:, 375–400. [CrossRef]
    [Google Scholar]
  122. Worden A. Z., Lee J. H., Mock T., Rouzé P., Simmons M. P., Aerts A. L., Allen A. E., Cuvelier M. L., Derelle E.. & other authors ( 2009;). Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas.. Science 324:, 268–272. [CrossRef][PubMed]
    [Google Scholar]
  123. Yang E. C., Kim K. M., Boo G. H., Lee J.-H., Boo S. M., Yoon H. S.. ( 2013a;). Complete mitochondrial genome of the agarophyte red alga Gelidium vagum (Gelidiales). . Mitochondrial DNA (in press).[PubMed]
    [Google Scholar]
  124. Yang E. C., Kim K. M., Kim S. Y., Yoon H. S.. ( 2013b;). Complete mitochondrial genome of agar-producing red alga Gracilariopsis chorda (Gracilariales). . Mitochondrial DNA (in press).[PubMed]
    [Google Scholar]
  125. Yoon H. S., Hackett J. D., Ciniglia C., Pinto G., Bhattacharya D.. ( 2004;). A molecular timeline for the origin of photosynthetic eukaryotes. . Mol Biol Evol 21:, 809–818. [CrossRef][PubMed]
    [Google Scholar]
  126. Yoon H. S., Reyes-Prieto A., Melkonian M., Bhattacharya D.. ( 2006;). Minimal plastid genome evolution in the Paulinella endosymbiont. . Curr Biol 16:, R670–R672. [CrossRef][PubMed]
    [Google Scholar]
  127. Yoon H. S., Nakayama T., Reyes-Prieto A., Andersen R. A., Boo S. M., Ishida K. I., Bhattacharya D.. ( 2009;). A single origin of the photosynthetic organelle in different Paulinella lineages. . BMC Evol Biol 9:, 98. [CrossRef][PubMed]
    [Google Scholar]
  128. Yoon H. S., Price D. C., Stepanauskas R., Rajah V. D., Sieracki M. E., Wilson W. H., Yang E. C., Duffy S., Bhattacharya D.. ( 2011;). Single-cell genomics reveals organismal interactions in uncultivated marine protists. . Science 332:, 714–717. [CrossRef][PubMed]
    [Google Scholar]
  129. Zhang K., Martiny A. C., Reppas N. B., Barry K. W., Malek J., Chisholm S. W., Church G. M.. ( 2006;). Sequencing genomes from single cells by polymerase cloning. . Nat Biotechnol 24:, 680–686. [CrossRef][PubMed]
    [Google Scholar]
  130. Zhang L., Wang X., Qian H., Chi S., Liu C., Liu T.. ( 2012;). Complete sequences of the mitochondrial DNA of the wild Gracilariopsis lemaneiformis and two mutagenic cultivated breeds (Gracilariaceae, Rhodophyta). . PLoS ONE 7:, e40241. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.054221-0
Loading
/content/journal/ijsem/10.1099/ijs.0.054221-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error