1887

Abstract

Two strains (JC83, JC84) of obligately anaerobic, HS-producing bacteria were isolated from estuarine sediment samples collected from Gangasagar, West Bengal, India. Cells were Gram-stain-negative, non-motile rods. Both strains were positive for oxidase, negative for catalase, hydrolysed casein, reduced nitrate and utilized citrate. Both strains grew chemoorganoheterotrophically with optimal pH of 7–8 (range 7–10) and at 30 °C (range 25–37 °C). Cω7, Cω7, C and C were the major fatty acids of both strains with minor amounts of C, C 3-OH and C. Polar lipids of both strains included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, phosphatidylcholine, phosphatidylinositol, an unidentified aminolipid (AL2), an unidentified phospholipid (PL2) and an unidentified lipid (L3). MK-6 was the major respiratory quinone. The DNA G+C content of strains JC83 and JC84 was 25.0 and 24.6 mol%, respectively. The strains showed DNA reassociation >85 % (86.0±0.5 %) (based on DNA–DNA hybridization). Based on 16S rRNA gene sequence analysis, both strains were identified as belonging to the family of the class with CL-S1 (95.4 % sequence similarity) as their closest phylogenetic neighbour. On the basis of morphological, physiological and chemotaxonomic characteristics as well as phylogenetic analysis, strains JC83 and JC84 are considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is JC84 ( = KCTC 15071 = MTCC 10956 = DSM 24636). An emended description of the genus is provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.054155-0
2013-12-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/12/4619.html?itemId=/content/journal/ijsem/10.1099/ijs.0.054155-0&mimeType=html&fmt=ahah

References

  1. Alongi D. M.. ( 1998;). Coastal Ecosystem Processes. Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  2. Baughn A. D., Malamy M. H.. ( 2004;). The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. . Nature 427:, 441–444. [CrossRef][PubMed]
    [Google Scholar]
  3. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  4. Castresana J.. ( 2000;). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17:, 540–552. [CrossRef][PubMed]
    [Google Scholar]
  5. Collado L., Cleenwerck I., Van Trappen S., De Vos P., Figueras M. J.. ( 2009;). Arcobacter mytili sp. nov., an indoxyl acetate-hydrolysis-negative bacterium isolated from mussels. . Int J Syst Evol Microbiol 59:, 1391–1396. [CrossRef][PubMed]
    [Google Scholar]
  6. Collado L., Levican A., Perez J., Figueras M. J.. ( 2011;). Arcobacter defluvii sp. nov., isolated from sewage samples. . Int J Syst Evol Microbiol 61:, 2155–2161. [CrossRef][PubMed]
    [Google Scholar]
  7. Das A., Silaghi-Dumitrescu R., Ljungdahl L. G., Kurtz D. M. Jr. ( 2005;). Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. . J Bacteriol 187:, 2020–2029. [CrossRef][PubMed]
    [Google Scholar]
  8. De Smet S., Vandamme P., De Zutter L., On S. L. W., Douidah L., Houf K.. ( 2011;). Arcobacter trophiarum sp. nov., isolated from fattening pigs. . Int J Syst Evol Microbiol 61:, 356–361. [CrossRef][PubMed]
    [Google Scholar]
  9. Donachie S. P., Bowman J. P., On S. L. W., Alam M.. ( 2005;). Arcobacter halophilus sp. nov., the first obligate halophile in the genus Arcobacter. . Int J Syst Evol Microbiol 55:, 1271–1277. [CrossRef][PubMed]
    [Google Scholar]
  10. Figueras M. J., Collado L., Levican A., Perez J., Solsona M. J., Yustes C.. ( 2011a;). Arcobacter molluscorum sp. nov., a new species isolated from shellfish. . Syst Appl Microbiol 34:, 105–109. [CrossRef][PubMed]
    [Google Scholar]
  11. Figueras M. J., Levican A., Collado L., Inza M. I., Yustes C.. ( 2011b;). Arcobacter ellisii sp. nov., isolated from mussels. . Syst Appl Microbiol 34:, 414–418. [CrossRef][PubMed]
    [Google Scholar]
  12. Hiraishi A., Hoshino Y.. ( 1984;). Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implications. . J Gen Appl Microbiol 30:, 435–448. [CrossRef]
    [Google Scholar]
  13. Hiraishi A., Hoshino Y., Kitamura H.. ( 1984;). Isoprenoid quinone composition in the classification of Rhodospirillaceae. . J Gen Appl Microbiol 30:, 197–210. [CrossRef]
    [Google Scholar]
  14. Houf K., On S. L. W., Coenye T., Mast J., Van Hoof J., Vandamme P.. ( 2005;). Arcobacter cibarius sp. nov., isolated from broiler carcasses. . Int J Syst Evol Microbiol 55:, 713–717. [CrossRef][PubMed]
    [Google Scholar]
  15. Houf K., On S. L. W., Coenye T., Debruyne L., De Smet S., Vandamme P.. ( 2009;). Arcobacter thereius sp. nov., isolated from pigs and ducks. . Int J Syst Evol Microbiol 59:, 2599–2604. [CrossRef][PubMed]
    [Google Scholar]
  16. Imhoff J. F., Pfennig N.. ( 2001;). Thioflavicoccus mobilis gen. nov., sp. nov., a novel purple sulfur bacterium with bacteriochlorophyll b. . Int J Syst Evol Microbiol 51:, 105–110.[PubMed]
    [Google Scholar]
  17. Imhoff J. F., Süling J., Petri R.. ( 1998;). Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa and Thermochromatium. . Int J Syst Bacteriol 48:, 1129–1143. [CrossRef][PubMed]
    [Google Scholar]
  18. Jørgensen B. B.. ( 1982;). Mineralization of organic matter in the sea bed – the role of sulphate reduction. . Nature 296:, 643–645. [CrossRef]
    [Google Scholar]
  19. Kates M.. ( 1972;). Techniques of Lipidology. New York:: Elsevier;.
    [Google Scholar]
  20. Kates M.. ( 1986;). Influence of salt concentration on membrane lipids of halophilic bacteria. . FEMS Microbiol Lett 39:, 95–101. [CrossRef]
    [Google Scholar]
  21. Kim H. M., Hwang C. Y., Cho B. C.. ( 2010;). Arcobacter marinus sp. nov.. Int J Syst Evol Microbiol 60:, 531–536. [CrossRef][PubMed]
    [Google Scholar]
  22. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  23. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  24. Lakshmi K. V. N. S., Sasikala Ch., Ashok Kumar G. V., Chandrasekaran R., Ramana Ch. V.. ( 2011a;). Phaeovibrio sulfidiphilus gen. nov., sp. nov., phototrophic alphaproteobacteria isolated from brackish water. . Int J Syst Evol Microbiol 61:, 828–833. [CrossRef][PubMed]
    [Google Scholar]
  25. Lakshmi K. V. N. S., Sasikala Ch., Takaichi S., Ramana Ch. V.. ( 2011b;). Phaeospirillum oryzae sp. nov., a spheroplast-forming, phototrophic alphaproteobacterium from a paddy soil. . Int J Syst Evol Microbiol 61:, 1656–1661. [CrossRef][PubMed]
    [Google Scholar]
  26. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. ( 1985;). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef][PubMed]
    [Google Scholar]
  27. Lemos R. S., Gomes C. M., Santana M., Le Gall J., Xavier A. V., Teixeira M.. ( 2001;). The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. . FEMS Lett 496:, 40–43.
    [Google Scholar]
  28. Levican A., Collado L., Aguilar C., Yustes C., Diéguez A. L., Romalde J. L., Figueras M. J.. ( 2012;). Arcobacter bivalviorum sp. nov. and Arcobacter venerupis sp. nov., new species isolated from shellfish. . Syst Appl Microbiol 35:, 133–138. [CrossRef][PubMed]
    [Google Scholar]
  29. Levican A., Collado L., Figueras M. J.. ( 2013;). Arcobacter cloacae sp. nov. and Arcobacter suis sp. nov., two new species isolated from food and sewage. . Syst Appl Microbiol 36:, 22–27. [CrossRef][PubMed]
    [Google Scholar]
  30. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  31. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  32. Oren A., Duker S., Ritter S.. ( 1996;). The polar lipid composition of Walsby’s square bacterium. . FEMS Microbiol Lett 138:, 135–140. [CrossRef]
    [Google Scholar]
  33. Poremba K., Tillmann U., Hesse K. J.. ( 1999;). Tidal impact on planktonic primary and bacterial production in the German Wadden Sea. Helgoland. . Mar Res 53:, 19–27.
    [Google Scholar]
  34. Postgate J. R.. ( 1984;). The Sulphate-Reducing Bacteria. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  35. Sasi Jyothsna T. S., Sasikala Ch., Ramana Ch. V.. ( 2008;). Desulfovibrio psychrotolerans sp. nov., a psychrotolerant and moderately alkaliphilic sulfate-reducing deltaproteobacterium from the Himalayas. . Int J Syst Evol Microbiol 58:, 821–825. [CrossRef][PubMed]
    [Google Scholar]
  36. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  37. Seldin L., Dubnau D.. ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans and other nitrogen-fixing Bacillus strains. . Int J Syst Bacteriol 35:, 151–154. [CrossRef]
    [Google Scholar]
  38. Tamaoka J., Fujimura Y.-K., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Microbiol 54:, 31–36. [CrossRef]
    [Google Scholar]
  39. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  40. Tindall B. J.. ( 1990;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  41. Tindall B. J., Tomlinson G. A., Hochstein L. I.. ( 1987;). Polar lipid composition of a new halobacterium. . Syst Appl Microbiol 9:, 6–8. [CrossRef][PubMed]
    [Google Scholar]
  42. Tourova T. P., Antonov A. S.. ( 1987;). Identification of microorganisms by rapid DNA-DNA hybridization. . Methods Microbiol 19:, 333–355. [CrossRef]
    [Google Scholar]
  43. Ursing J. B., Lior H., Owen R. J.. ( 1994;). Proposal of minimal standards for describing new species of the family Campylobacteraceae. . Int J Syst Bacteriol 44:, 842–845. [CrossRef][PubMed]
    [Google Scholar]
  44. Vandamme P., Falsen E., Rossau R., Hoste B., Segers P., Tytgat R., De Ley J.. ( 1991;). Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov.. Int J Syst Bacteriol 41:, 88–103. [CrossRef][PubMed]
    [Google Scholar]
  45. Vandamme P., Vancanneyt M., Pot B., Mels L., Hoste B., Dewettinck D., Vlaes L., van den Borre C., Higgins R.. & other authors ( 1992;). Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. . Int J Syst Bacteriol 42:, 344–356. [CrossRef][PubMed]
    [Google Scholar]
  46. Vandamme P., Dewhirst F. E., Paster B. J., On S. L. W.. ( 2005;). Family I. Campylobacteraceae. Vandamme & De Ley 1991, 453VP. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, pp. 1145–1146. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  47. Webster G., Rinna J., Roussel E. G., Fry J. C., Weightman A. J., Parkes R. J.. ( 2010;). Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. . FEMS Microbiol Ecol 72:, 179–197. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.054155-0
Loading
/content/journal/ijsem/10.1099/ijs.0.054155-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error