sp. nov., isolated from the rumen of Korean native cattle Free

Abstract

Three strictly anaerobic, methanogenic strains JH1, JH4 and JH8 were isolated from rumen of the Korean native cattle (HanWoo; ) in South Korea. The colonies were circular, opaque, and slightly yellowish. Phylogenetic analyses of 16S rRNA gene and (encoding α subunit of methyl-coenzyme M reductase) sequences confirmed the affiliation of the novel strains with the , and SH was the most closely related species. The 16S rRNA gene and sequence similarities between strains JH1, JH4 and JH8 and SH were 96.2 and 89.0 % respectively, and DNA–DNA hybridization of the isolates and DSM 11976 showed a 20 % reassociation. Strain JH1 exhibited 92 % DNA–DNA relatedness with strains JH4 and JH8, and their 16S rRNA gene and sequences were identical. Cells stained Gram-positive and were non-motile rods, 1.5–1.8 µm long and 0.6 µm wide. The strains were able to use H/CO and formate. The optimum temperature and pH ranges for growth were 37–40 °C and pH 6.5–7.0. The DNA G+C content of strain JH1 was 28 mol%. Based on data from this study using a polyphasic approach, the three strains represent a novel species of genus , for which the name sp. nov. is proposed. The type strain is JH1 ( = KCTC 4102 = JCM 18376).

Funding
This study was supported by the:
  • National Research Foundation of Korea (NRF) (Award OGM0211212)
  • Korea government (MEST)
  • MEST (Award NMM0101232 and RBM4351112)
  • KRIBB Research Initiative Program (Award KGM4111342 and KCM1051312)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.054056-0
2013-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4196.html?itemId=/content/journal/ijsem/10.1099/ijs.0.054056-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Wolfe R. S. ( 1976 ). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. . Appl Environ Microbiol 32, 781791.[PubMed]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989 ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39, 224229. [View Article]
    [Google Scholar]
  3. Fujimoto S., Nakagami Y., Kojima F. ( 2004 ). Optimal bacterial DNA isolation method using bead-beating technique. . Memoirs of School of Health Sciences, Faculty of Medicine, Kyushu University, 3337. [View Article]
    [Google Scholar]
  4. Gerhardt P., Murray R., Wood W. A., Krieg N. R. ( 1994 ). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  5. Hippe H. ( 1991 ). Maintenance of methanogenic bacteria. . In Maintenance of Microorganism and Cultured Cells, pp. 6982. Edited by Kirsop B. E., Snell J. S. . London:: Academic Press;.
    [Google Scholar]
  6. Hungate R. E. ( 1969 ). A roll tube method for cultivation of strict anaerobes. . Methods Microbiol 3B, pp. 117132. [View Article]
    [Google Scholar]
  7. Hwang W., Kim H., Lee E., Lim J., Roh S., Shin T., Hwang K., Lee B. ( 2000 ). Purification and embryotropic roles of tissue inhibitor of metalloproteinase-1 in development of “HanWoo” (Bos taurus coreanae) oocytes co-cultured with bovine oviduct epithelial cells. . J Vet Med Sci 62, 15. [View Article] [PubMed]
    [Google Scholar]
  8. Janssen P. H., Kirs M. ( 2008 ). Structure of the archaeal community of the rumen. . Appl Environ Microbiol 74, 36193625. [View Article] [PubMed]
    [Google Scholar]
  9. Jeyanathan J., Kirs M., Ronimus R. S., Hoskin S. O., Janssen P. H. ( 2011 ). Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets. . FEMS Microbiol Ecol 76, 311326. [View Article] [PubMed]
    [Google Scholar]
  10. Kandler O., König H. ( 1985 ). Cell envelopes of Archaebacteria. . In The Bacteria, vol. 8, Archaebacteria, pp. 413457. Edited by Woese C. R., Wolfe R. S. . New York:: Academic Press;.
    [Google Scholar]
  11. Keswani J., Whitman W. B. ( 2001 ). Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. . Int J Syst Evol Microbiol 51, 667678.[PubMed]
    [Google Scholar]
  12. Kim, C. C.-H. (2012). Identification of rumen methanogens, characterization of substrate requirements and measurements of hydrogen thresholds. Master Thesis. Institute of Molecular Biological Science, Massey University, New Zealand.
  13. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  14. König H. ( 1995 ). Isolation and analysis of cell walls from methanogenic archaea. . In Archaea: A Laboratory Manual, vol. 2, Methanogens, pp. 315328. Edited by Sowers K. R., Schreier H. T. . Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  15. Kumar S., Puniya A. K., Puniya M., Dagar S. S., Sirohi S. K., Singh K., Griffith G. W. ( 2009 ). Factors affecting rumen methanogens and methane mitigation strategies. . World J Microbiol Biotechnol 25, 15571566. [View Article]
    [Google Scholar]
  16. Kumar S., Dagar S. S., Puniya A. K. ( 2012 ). Isolation and characterization of methanogens from rumen of Murrah buffalo. . Ann Microbiol 62, 345350. [View Article]
    [Google Scholar]
  17. Lai M.-C., Shu C.-M., Chen S.-C., Lai L.-J., Chiou M.-S., Hua J. J. ( 2000 ). Methanosarcina mazei strain O1M9704, methanogen with novel tubule isolated from estuarine environment. . Curr Microbiol 41, 1520. [View Article] [PubMed]
    [Google Scholar]
  18. Lee H. J., Jung J. Y., Oh Y. K., Lee S.-S., Madsen E. L., Jeon C. O. ( 2012 ). Comparative survey of rumen microbial communities and metabolites across one caprine and three bovine groups, using bar-coded pyrosequencing and ¹H nuclear magnetic resonance spectroscopy. . Appl Environ Microbiol 78, 59835993. [View Article] [PubMed]
    [Google Scholar]
  19. Lee G.-H., Rhee M.-S., Chang D.-H., Lee J., Kim S., Yoon M. H., Kim B.-C. ( 2013 ). Oscillibacter ruminantium sp. nov., isolated from the rumen of Korean native cattle. . Int J Syst Evol Microbiol 63, 19421946. [View Article] [PubMed]
    [Google Scholar]
  20. Luton P. E., Wayne J. M., Sharp R. J., Riley P. W. ( 2002 ). The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. . Microbiology 148, 35213530.[PubMed]
    [Google Scholar]
  21. Madrid V. M., Taylor G. T., Scranton M. I., Chistoserdov A. Y. ( 2001 ). Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. . Appl Environ Microbiol 67, 16631674. [View Article] [PubMed]
    [Google Scholar]
  22. Marmur J., Doty P. ( 1962 ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5, 109118. [View Article] [PubMed]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  24. Miller T. L., Lin C. ( 2002 ). Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov.. Int J Syst Evol Microbiol 52, 819822. [View Article] [PubMed]
    [Google Scholar]
  25. Moss A. R., Jouany J.-P., Newbold J. ( 2000 ). Methane production by ruminants: its contribution to global warming. . Ann Zootech 49, 231253. [View Article]
    [Google Scholar]
  26. Rea S., Bowman J. P., Popovski S., Pimm C., Wright A.-D. G. ( 2007 ). Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. . Int J Syst Evol Microbiol 57, 450456. [View Article] [PubMed]
    [Google Scholar]
  27. Seol Y. J., Kim K. H., Baek Y. C., Lee S. C., Ok J. W., Lee K. Y., Choi C. W., Lee S. S., Oh Y. K. ( 2012 ). [ Effect of grain sources on the ruminal methane production in Hanwoo steers. ]. J. Anim. Sci. & Technol. 54, 1522 (in Korean). [View Article]
    [Google Scholar]
  28. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [View Article]
    [Google Scholar]
  29. Tamura K., Nei M. ( 1993 ). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10, 512526.[PubMed]
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J. ( 1994 ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22, 46734680. [View Article] [PubMed]
    [Google Scholar]
  32. Zhou M., Hernandez-Sanabria E., Guan L. L. ( 2009 ). Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. . Appl Environ Microbiol 75, 65246533. [View Article] [PubMed]
    [Google Scholar]
  33. Zhou M., Hernandez-Sanabria E., Guan L. ( 2010 ). Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. . Appl Environ Microbiol 76, 37763786. [View Article] [PubMed]
    [Google Scholar]
  34. Zhou M., McAllister T., Guan L. ( 2011 ). Molecular identification of rumen methanogens: technologies, advances and prospects. . Anim Feed Sci Technol 166, 7686. [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.054056-0
Loading
/content/journal/ijsem/10.1099/ijs.0.054056-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed