1887

Abstract

Three strictly anaerobic, methanogenic strains JH1, JH4 and JH8 were isolated from rumen of the Korean native cattle (HanWoo; ) in South Korea. The colonies were circular, opaque, and slightly yellowish. Phylogenetic analyses of 16S rRNA gene and (encoding α subunit of methyl-coenzyme M reductase) sequences confirmed the affiliation of the novel strains with the , and SH was the most closely related species. The 16S rRNA gene and sequence similarities between strains JH1, JH4 and JH8 and SH were 96.2 and 89.0 % respectively, and DNA–DNA hybridization of the isolates and DSM 11976 showed a 20 % reassociation. Strain JH1 exhibited 92 % DNA–DNA relatedness with strains JH4 and JH8, and their 16S rRNA gene and sequences were identical. Cells stained Gram-positive and were non-motile rods, 1.5–1.8 µm long and 0.6 µm wide. The strains were able to use H/CO and formate. The optimum temperature and pH ranges for growth were 37–40 °C and pH 6.5–7.0. The DNA G+C content of strain JH1 was 28 mol%. Based on data from this study using a polyphasic approach, the three strains represent a novel species of genus , for which the name sp. nov. is proposed. The type strain is JH1 ( = KCTC 4102 = JCM 18376).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.054056-0
2013-11-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4196.html?itemId=/content/journal/ijsem/10.1099/ijs.0.054056-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Wolfe R. S.. ( 1976;). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. . Appl Environ Microbiol 32:, 781–791.[PubMed]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  3. Fujimoto S., Nakagami Y., Kojima F.. ( 2004;). Optimal bacterial DNA isolation method using bead-beating technique. . Memoirs of School of Health Sciences, Faculty of Medicine, Kyushu University, 33–37. [CrossRef]
    [Google Scholar]
  4. Gerhardt P., Murray R., Wood W. A., Krieg N. R.. ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  5. Hippe H.. ( 1991;). Maintenance of methanogenic bacteria. . In Maintenance of Microorganism and Cultured Cells, pp. 69–82. Edited by Kirsop B. E., Snell J. S... London:: Academic Press;.
    [Google Scholar]
  6. Hungate R. E.. ( 1969;). A roll tube method for cultivation of strict anaerobes. . Methods Microbiol 3B:, pp. 117–132. [CrossRef]
    [Google Scholar]
  7. Hwang W., Kim H., Lee E., Lim J., Roh S., Shin T., Hwang K., Lee B.. ( 2000;). Purification and embryotropic roles of tissue inhibitor of metalloproteinase-1 in development of “HanWoo” (Bos taurus coreanae) oocytes co-cultured with bovine oviduct epithelial cells. . J Vet Med Sci 62:, 1–5. [CrossRef][PubMed]
    [Google Scholar]
  8. Janssen P. H., Kirs M.. ( 2008;). Structure of the archaeal community of the rumen. . Appl Environ Microbiol 74:, 3619–3625. [CrossRef][PubMed]
    [Google Scholar]
  9. Jeyanathan J., Kirs M., Ronimus R. S., Hoskin S. O., Janssen P. H.. ( 2011;). Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets. . FEMS Microbiol Ecol 76:, 311–326. [CrossRef][PubMed]
    [Google Scholar]
  10. Kandler O., König H.. ( 1985;). Cell envelopes of Archaebacteria. . In The Bacteria, vol. 8, Archaebacteria, pp. 413–457. Edited by Woese C. R., Wolfe R. S... New York:: Academic Press;.
    [Google Scholar]
  11. Keswani J., Whitman W. B.. ( 2001;). Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. . Int J Syst Evol Microbiol 51:, 667–678.[PubMed]
    [Google Scholar]
  12. Kim, C. C.-H. (2012). Identification of rumen methanogens, characterization of substrate requirements and measurements of hydrogen thresholds. Master Thesis. Institute of Molecular Biological Science, Massey University, New Zealand.
  13. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  14. König H.. ( 1995;). Isolation and analysis of cell walls from methanogenic archaea. . In Archaea: A Laboratory Manual, vol. 2, Methanogens, pp. 315–328. Edited by Sowers K. R., Schreier H. T... Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  15. Kumar S., Puniya A. K., Puniya M., Dagar S. S., Sirohi S. K., Singh K., Griffith G. W.. ( 2009;). Factors affecting rumen methanogens and methane mitigation strategies. . World J Microbiol Biotechnol 25:, 1557–1566. [CrossRef]
    [Google Scholar]
  16. Kumar S., Dagar S. S., Puniya A. K.. ( 2012;). Isolation and characterization of methanogens from rumen of Murrah buffalo. . Ann Microbiol 62:, 345–350. [CrossRef]
    [Google Scholar]
  17. Lai M.-C., Shu C.-M., Chen S.-C., Lai L.-J., Chiou M.-S., Hua J. J.. ( 2000;). Methanosarcina mazei strain O1M9704, methanogen with novel tubule isolated from estuarine environment. . Curr Microbiol 41:, 15–20. [CrossRef][PubMed]
    [Google Scholar]
  18. Lee H. J., Jung J. Y., Oh Y. K., Lee S.-S., Madsen E. L., Jeon C. O.. ( 2012;). Comparative survey of rumen microbial communities and metabolites across one caprine and three bovine groups, using bar-coded pyrosequencing and ¹H nuclear magnetic resonance spectroscopy. . Appl Environ Microbiol 78:, 5983–5993. [CrossRef][PubMed]
    [Google Scholar]
  19. Lee G.-H., Rhee M.-S., Chang D.-H., Lee J., Kim S., Yoon M. H., Kim B.-C.. ( 2013;). Oscillibacter ruminantium sp. nov., isolated from the rumen of Korean native cattle. . Int J Syst Evol Microbiol 63:, 1942–1946. [CrossRef][PubMed]
    [Google Scholar]
  20. Luton P. E., Wayne J. M., Sharp R. J., Riley P. W.. ( 2002;). The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. . Microbiology 148:, 3521–3530.[PubMed]
    [Google Scholar]
  21. Madrid V. M., Taylor G. T., Scranton M. I., Chistoserdov A. Y.. ( 2001;). Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. . Appl Environ Microbiol 67:, 1663–1674. [CrossRef][PubMed]
    [Google Scholar]
  22. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  24. Miller T. L., Lin C.. ( 2002;). Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov.. Int J Syst Evol Microbiol 52:, 819–822. [CrossRef][PubMed]
    [Google Scholar]
  25. Moss A. R., Jouany J.-P., Newbold J.. ( 2000;). Methane production by ruminants: its contribution to global warming. . Ann Zootech 49:, 231–253. [CrossRef]
    [Google Scholar]
  26. Rea S., Bowman J. P., Popovski S., Pimm C., Wright A.-D. G.. ( 2007;). Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. . Int J Syst Evol Microbiol 57:, 450–456. [CrossRef][PubMed]
    [Google Scholar]
  27. Seol Y. J., Kim K. H., Baek Y. C., Lee S. C., Ok J. W., Lee K. Y., Choi C. W., Lee S. S., Oh Y. K.. ( 2012;). [ Effect of grain sources on the ruminal methane production in Hanwoo steers. ]. J. Anim. Sci. & Technol. 54:, 15–22 (in Korean). [CrossRef]
    [Google Scholar]
  28. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  29. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10:, 512–526.[PubMed]
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  32. Zhou M., Hernandez-Sanabria E., Guan L. L.. ( 2009;). Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. . Appl Environ Microbiol 75:, 6524–6533. [CrossRef][PubMed]
    [Google Scholar]
  33. Zhou M., Hernandez-Sanabria E., Guan L.. ( 2010;). Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. . Appl Environ Microbiol 76:, 3776–3786. [CrossRef][PubMed]
    [Google Scholar]
  34. Zhou M., McAllister T., Guan L.. ( 2011;). Molecular identification of rumen methanogens: technologies, advances and prospects. . Anim Feed Sci Technol 166:, 76–86. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.054056-0
Loading
/content/journal/ijsem/10.1099/ijs.0.054056-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error