1887

Abstract

A taxonomic study was carried out on strain 22II14-10F7, which was isolated from the deep-sea water of the Atlantic Ocean with oil-degrading enrichment. The bacterium was Gram-stain-negative, oxidase- and catalase-positive and rod-shaped. Growth was observed at salinities from 0.5 to 15 % and at temperatures from 4 to 37 °C; it was unable to hydrolyse Tween 40, 80 or gelatin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II14-10F7 represented a member of the genus , with highest sequence similarity of 97.3 % to SM-A87, while the similarities to other species were all below 94.0 %. The DNA–DNA hybridization estimate of the similarity between strain 22II14-10F7 and SM-A87 was 27.20±2.43 % according to their genome sequences. The principal fatty acids were iso-C, anteiso-C , iso-C G, iso-C 3-OH, summed feature 3 (Cω7/ω6) and summed feature 9 (iso-Cω9 or C 10-methyl). The G+C content of the chromosomal DNA was 35.5 mol%. The major respiratory quinone was determined to be MK-6. Phosphatidylethanolamine (PE), two aminolipids (AL1 and AL2) and five unknown lipids (L1–L5) were present. The combined genotypic and phenotypic data show that strain 22II14-10F7 represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain 22II14-10F7 ( = CGMCC1.12470 = LMG 27421 = MCCC 1A06481).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.054007-0
2014-01-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/16.html?itemId=/content/journal/ijsem/10.1099/ijs.0.054007-0&mimeType=html&fmt=ahah

References

  1. Auch A. F., Klenk H. P., Göker M.. ( 2010a;). Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. . Stand Genomic Sci 2:, 142–148. [CrossRef][PubMed]
    [Google Scholar]
  2. Auch A. F., von Jan M., Klenk H. P., Göker M.. ( 2010b;). Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. . Stand Genomic Sci 2:, 117–134. [CrossRef][PubMed]
    [Google Scholar]
  3. Ausubel F., Brent R., Kingston R., Moore D., Seidman J., Smith J., Struhl K.. (editors) ( 1995;). Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, , 3rd edn.. New York:: Wiley;.
    [Google Scholar]
  4. Bernardet J.-F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  5. Bligh E. G., Dyer W. J.. ( 1959;). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef][PubMed]
    [Google Scholar]
  6. Dong X.-Z., Cai M.-Y..( 2001;). Determinative Manual for Routine Bacteriology. Beijing:: Scientific Press (English translation);.
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Lai Q., Yuan J., Gu L., Shao Z.. ( 2009;). Marispirillum indicum gen. nov., sp. nov., isolated from a deep-sea environment. . Int J Syst Evol Microbiol 59:, 1278–1281. [CrossRef][PubMed]
    [Google Scholar]
  9. Liu C., Shao Z.. ( 2005;). Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. . Int J Syst Evol Microbiol 55:, 1181–1186. [CrossRef][PubMed]
    [Google Scholar]
  10. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. ( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics 14:, 60. [CrossRef][PubMed]
    [Google Scholar]
  11. Qin Q. L., Zhao D. L., Wang J., Chen X. L., Dang H. Y., Li T. G., Zhang Y. Z., Gao P. J.. ( 2007;). Wangia profunda gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from southern Okinawa Trough deep-sea sediment. . FEMS Microbiol Lett 271:, 53–58. [CrossRef][PubMed]
    [Google Scholar]
  12. Qin Q. L., Zhang X. Y., Wang X. M., Liu G. M., Chen X. L., Xie B. B., Dang H. Y., Zhou B. C., Yu J., Zhang Y. Z.. ( 2010;). The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation. . BMC Genomics 11:, 247. [CrossRef][PubMed]
    [Google Scholar]
  13. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  14. Rzhetsky A., Nei M.. ( 1992;). Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. . J Mol Evol 35:, 367–375. [CrossRef][PubMed]
    [Google Scholar]
  15. Rzhetsky A., Nei M.. ( 1993;). Theoretical foundation of the minimum-evolution method of phylogenetic inference. . Mol Biol Evol 10:, 1073–1095.[PubMed]
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. , MIDI Technical Note 101. Newark, DE:: MIDI;.
    [Google Scholar]
  18. Shieh W. Y., Chen Y. W., Chaw S. M., Chiu H. H.. ( 2003;). Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. . Int J Syst Evol Microbiol 53:, 479–484. [CrossRef][PubMed]
    [Google Scholar]
  19. Skerman V. B. D.. ( 1967;). A Guide to the Identification of the Genera of Bacteria, , 2nd edn.. Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  21. Tindall B.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  22. Tindall B.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  23. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.054007-0
Loading
/content/journal/ijsem/10.1099/ijs.0.054007-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error