1887

Abstract

The marine genus currently comprises six species, some of which were intensively studied mainly due to their ability to produce secondary metabolites. The type strain of the type species, BS107, has been deposited at several public culture collections worldwide. Based on differences in plasmid profiles, we detected that the alleged type strains deposited at the Collection Institute Pasteur (CIP; Paris, France) as CIP 105210 and at the German Collection of Microorganisms and Cell Cultures (DSMZ; Braunschweig, Germany) as DSM 17395 are not identical. To determine the identity of these strains, we conducted DNA–DNA hybridization, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), 16S rRNA gene and internal transcribed spacer (ITS) sequence analyses, as well as physiological experiments. Based on the detailed 16S rRNA gene reanalysis we showed that strain CIP 105210 most likely corresponds to the original type strain BS107. In contrast, the strain DSM 17395 exhibits a much closer affiliation to DSM 16374 ( = T5) and should thus be allocated to this species. The detection of the dissimilarity of strains CIP 105210 and DSM 17395 will influence future comparative studies within the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.053900-0
2013-11-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4340.html?itemId=/content/journal/ijsem/10.1099/ijs.0.053900-0&mimeType=html&fmt=ahah

References

  1. Baker G. C., Smith J. J., Cowan D. A.. ( 2003;). Review and re-analysis of domain-specific 16S primers. . J Microbiol Methods 55:, 541–555. [CrossRef][PubMed]
    [Google Scholar]
  2. Berger M., Neumann A., Schulz S., Simon M., Brinkhoff T.. ( 2011;). Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. . J Bacteriol 193:, 6576–6585. [CrossRef][PubMed]
    [Google Scholar]
  3. Berger M., Brock N. L., Liesegang H., Dogs M., Preuth I., Simon M., Dickschat J. S., Brinkhoff T.. ( 2012;). Genetic analysis of the upper phenylacetate catabolic pathway in the production of tropodithietic acid by Phaeobacter gallaeciensis. . Appl Environ Microbiol 78:, 3539–3551. [CrossRef][PubMed]
    [Google Scholar]
  4. Bochner B. R.. ( 2009;). Global phenotypic characterization of bacteria. . FEMS Microbiol Rev 33:, 191–205. [CrossRef][PubMed]
    [Google Scholar]
  5. Bochner B. R., Gadzinski P., Panomitros E.. ( 2001;). Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. . Genome Res 11:, 1246–1255. [CrossRef][PubMed]
    [Google Scholar]
  6. Brinkhoff T., Bach G., Heidorn T., Liang L., Schlingloff A., Simon M.. ( 2004;). Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. . Appl Environ Microbiol 70:, 2560–2565. [CrossRef][PubMed]
    [Google Scholar]
  7. Bruhn J. B., Gram L., Belas R.. ( 2007;). Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions. . Appl Environ Microbiol 73:, 442–450. [CrossRef][PubMed]
    [Google Scholar]
  8. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  9. Collins A. J., Nyholm S. V.. ( 2011;). Draft genome of Phaeobacter gallaeciensis ANG1, a dominant member of the accessory nidamental gland of Euprymna scolopes. . J Bacteriol 193:, 3397–3398. [CrossRef][PubMed]
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  11. Dickschat J. S., Zell C., Brock N. L.. ( 2010;). Pathways and substrate specificity of DMSP catabolism in marine bacteria of the Roseobacter clade. . ChemBioChem 11:, 417–425. [CrossRef][PubMed]
    [Google Scholar]
  12. Farris J. S.. ( 1972;). Estimating phylogenetic trees from distance matrices. . Am Nat 106:, 645–668. [CrossRef]
    [Google Scholar]
  13. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  14. Fernandes N., Case R. J., Longford S. R., Seyedsayamdost M. R., Steinberg P. D., Kjelleberg S., Thomas T.. ( 2011;). Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra. . PLoS ONE 6:, e27387. [CrossRef][PubMed]
    [Google Scholar]
  15. Fitch W. M.. ( 1971;). Towards defining the course of evolution: minimal change for a specified tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  16. Gaboyer F., Tindall B. J., Ciobanu M.-C., Duthoit F., Le Romancer M., Alain K.. ( 2013;). Phaeobacter leonis sp. nov., an alphaproteobacterium from Mediterranean Sea sediments. . Int J Syst Evol Microbiol 63:, 3301–3306. [CrossRef][PubMed]
    [Google Scholar]
  17. Geng H., Bruhn J. B., Nielsen K. F., Gram L., Belas R.. ( 2008;). Genetic dissection of tropodithietic acid biosynthesis by marine roseobacters. . Appl Environ Microbiol 74:, 1535–1545. [CrossRef][PubMed]
    [Google Scholar]
  18. Gürtler V., Stanisich V. A.. ( 1996;). New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. . Microbiology 142:, 3–16. [CrossRef][PubMed]
    [Google Scholar]
  19. Gutell R. R., Larsen N., Woese C. R.. ( 1994;). Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. . Microbiol Rev 58:, 10–26.[PubMed]
    [Google Scholar]
  20. Hess P. N., De Moraes Russo C. A.. ( 2007;). An empirical test of the midpoint rooting method. . Biol J Linn Soc Lond 92:, 669–674. [CrossRef]
    [Google Scholar]
  21. Huß V. A., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  22. Katoh K., Kuma K., Toh H., Miyata T.. ( 2005;). mafft version 5: improvement in accuracy of multiple sequence alignment. . Nucleic Acids Res 33:, 511–518. [CrossRef][PubMed]
    [Google Scholar]
  23. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  24. Markowitz V. M., Chen I.-M. A., Palaniappan K., Chu K., Szeto E., Grechkin Y., Ratner A., Jacob B., Huang J.. & other authors ( 2012;). IMG: the Integrated Microbial Genomes database and comparative analysis system. . Nucleic Acids Res 40: (Database issue), D115–D122. [CrossRef][PubMed]
    [Google Scholar]
  25. Martens T., Heidorn T., Pukall R., Simon M., Tindall B. J., Brinkhoff T.. ( 2006;). Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. . Int J Syst Evol Microbiol 56:, 1293–1304. [CrossRef][PubMed]
    [Google Scholar]
  26. Martens T., Gram L., Grossart H.-P., Kessler D., Müller R., Simon M., Wenzel S. C., Brinkhoff T.. ( 2007;). Bacteria of the Roseobacter clade show potential for secondary metabolite production. . Microb Ecol 54:, 31–42. [CrossRef][PubMed]
    [Google Scholar]
  27. Pattengale N. D., Alipour M., Bininda-Emonds O. R. P., Moret B. M. E., Stamatakis A.. ( 2010;). How many bootstrap replicates are necessary?. J Comput Biol 17:, 337–354. [CrossRef][PubMed]
    [Google Scholar]
  28. Petersen J.. ( 2011;). Phylogeny and compatibility: plasmid classification in the genomics era. . Arch Microbiol 193:, 313–321.[PubMed]
    [Google Scholar]
  29. Petersen J., Frank O., Göker M., Pradella S.. ( 2013;). Extrachromosomal, extraordinary and essential — the plasmids of the Roseobacter clade. . Appl Microbiol Biotechnol 97:, 2805–2815. [CrossRef][PubMed]
    [Google Scholar]
  30. Pradella S., Päuker O., Petersen J.. ( 2010;). Genome organisation of the marine Roseobacter clade member Marinovum algicola. . Arch Microbiol 192:, 115–126. [CrossRef][PubMed]
    [Google Scholar]
  31. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E.. ( 1996;). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov.. Int J Syst Bacteriol 46:, 1088–1092. [CrossRef][PubMed]
    [Google Scholar]
  32. Rao D., Webb J. S., Kjelleberg S.. ( 2005;). Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. . Appl Environ Microbiol 71:, 1729–1736. [CrossRef][PubMed]
    [Google Scholar]
  33. Römling U., Fislage R., Tümmler B.. ( 1996;). Macrorestriction mapping an analysis of bacterial genomes. . In Nonmammalian Genomic Analysis: A Practical Guide, pp. 165–195. Edited by Birren B., Lai E... San Diego, CA:: Academic Press;. [CrossRef]
    [Google Scholar]
  34. Ruiz-Ponte C., Cilia V., Lambert C., Nicolas J. L.. ( 1998;). Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus. . Int J Syst Bacteriol 48:, 537–542. [CrossRef][PubMed]
    [Google Scholar]
  35. Seyedsayamdost M. R., Carr G., Kolter R., Clardy J.. ( 2011a;). Roseobacticides: small molecule modulators of an algal-bacterial symbiosis. . J Am Chem Soc 133:, 18343–18349. [CrossRef][PubMed]
    [Google Scholar]
  36. Seyedsayamdost M. R., Case R. J., Kolter R., Clardy J.. ( 2011b;). The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. . Nat Chem 3:, 331–335. [CrossRef][PubMed]
    [Google Scholar]
  37. Smibert R. M., Krieg N. R.. ( 1981;). Phenotypic characterization. . In Manual of Methods for General Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  38. Stamatakis A., Hoover P., Rougemont J.. ( 2008;). A rapid bootstrap algorithm for the RAxML Web servers. . Syst Biol 57:, 758–771. [CrossRef][PubMed]
    [Google Scholar]
  39. Swofford D. L.. ( 2002;). paup*: Phylogenetic analysis using parsimony (and other methods), version 4.0b10. . Sunderland:: Sinauer Associates;.
  40. Thole S., Kalhoefer D., Voget S., Berger M., Engelhardt T., Liesegang H., Wollherr A., Kjelleberg S., Daniel R.. & other authors ( 2012;). Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. . ISME J 6:, 2229–2244. [CrossRef][PubMed]
    [Google Scholar]
  41. Tóth E. M., Schumann P., Borsodi A. K., Kéki Z., Kovács A. L., Márialigeti K.. ( 2008;). Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). . Int J Syst Evol Microbiol 58:, 976–981. [CrossRef][PubMed]
    [Google Scholar]
  42. Vaas L. A. I., Sikorski J., Michael V., Göker M., Klenk H.-P.. ( 2012;). Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. . PLoS ONE 7:, e34846. [CrossRef][PubMed]
    [Google Scholar]
  43. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  44. Zech H., Thole S., Schreiber K., Kalhöfer D., Voget S., Brinkhoff T., Simon M., Schomburg D., Rabus R.. ( 2009;). Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. . Proteomics 9:, 3677–3697. [CrossRef][PubMed]
    [Google Scholar]
  45. Zuker M.. ( 2003;). Mfold web server for nucleic acid folding and hybridization prediction. . Nucleic Acids Res 31:, 3406–3415. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.053900-0
Loading
/content/journal/ijsem/10.1099/ijs.0.053900-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error