1887

Abstract

Strains of a novel alphaproteobacterium were isolated from ultrapure water of a Hungarian power plant on a newly developed medium. Phylogenetic analysis of the 16S rRNA gene sequences of the novel strains showed that these bacteria belong to a distinct lineage far from any known taxa. Based on the 16S rRNA gene sequences, strains PI_31, PI_25 and PI_21 exhibited the highest sequence similarity to AMX51 (93.43 %) and DSM 9653 (93.36 %); similarity to all other taxa was less than 93.23 %. Fatty acid profiles, matrix-assisted laser-desorption/ionization time-of-flight mass spectra of cell extracts as well as physiological and biochemical characteristics indicated that our strains represent a novel genus and species within the class . The major isoprenoid quinone of the strains was Q-10, the major cellular fatty acids were Cω7 and 11-methyl Cω7 and the polar lipid profiles of the strains contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and several unknown phospholipids and other lipids. The characteristic diamino acid in their cell wall was -diaminopimelic acid. The G+C content of DNA of the proposed type strain PI_21 was 68.9 mol%. A new genus and species, gen. nov., sp. nov., is proposed to accommodate the strains. Strain PI_21 ( = DSM 25521 = NCAIM B 02510) is the type strain of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.053843-0
2014-03-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/839.html?itemId=/content/journal/ijsem/10.1099/ijs.0.053843-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Amann R., Snaidr J., Wagner M., Ludwig W., Schleifer K.-H.. ( 1996;). In situ visualization of high genetic diversity in a natural microbial community. . J Bacteriol 178:, 3496–3500.[PubMed]
    [Google Scholar]
  3. Bohus V., Tóth E. M., Székely A. J., Makk J., Baranyi K., Patek G., Schunk J., Márialigeti K.. ( 2010;). Microbiological investigation of an industrial ultra pure supply water plant using cultivation-based and cultivation-independent methods. . Water Res 44:, 6124–6132. [CrossRef][PubMed]
    [Google Scholar]
  4. Brenner D. J., Hollis D. G., Moss C. W., English C. K., Hall G. S., Vincent J., Radosevic J., Birkness K. A., Bibb W. F.. & other authors ( 1991;). Proposal of Afipia gen. nov., with Afipia felis sp. nov. (formerly the cat scratch disease bacillus), Afipia clevelandensis sp. nov. (formerly the Cleveland Clinic Foundation strain), Afipia broomeae sp. nov., and three unnamed genospecies. . J Clin Microbiol 29:, 2450–2460.[PubMed]
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  6. Claus M.. ( 1992;). A standardised Gram staining procedure. . World J Microbiol Biotechnol 8:, 451–452. [CrossRef]
    [Google Scholar]
  7. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  8. Costerton J. W., Cheng K.-J., Geesey G. G., Ladd T. I. M., Nickel J. C., Dasgupta M., Marrie T. J.. ( 1987;). Bacterial biofilms in nature and disease. . Annu Rev Microbiol 41:, 435–464. [CrossRef][PubMed]
    [Google Scholar]
  9. Cowan S. T., Steel K. J.. ( 1974;). Manual for the Identification of Medical Bacteria, , 2nd edn.. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  10. Das S. K., Mishra A. K., Tindall B. J., Rainey F. A., Stackebrandt E.. ( 1996;). Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. . Int J Syst Bacteriol 46:, 981–987. [CrossRef][PubMed]
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  12. Embley T. M., Wait R.. ( 1994;). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 141–147. Edited by Goodfellow M., O’Donnell A. G... New York:: Wiley;.
    [Google Scholar]
  13. Emerson D. R., Worden R. M., Breznak J. A.. ( 1994;). A diffusion gradient chamber for studying microbial behavior and separating microorganisms. . Appl Environ Microbiol 60:, 1269–1278.[PubMed]
    [Google Scholar]
  14. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–789. [CrossRef]
    [Google Scholar]
  16. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K.. ( 1997;). Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. . Int J Syst Bacteriol 47:, 1129–1133. [CrossRef][PubMed]
    [Google Scholar]
  17. Hasegawa T., Takizawa M., Tanida S.. ( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. . J Gen Appl Microbiol 29:, 319–322. [CrossRef]
    [Google Scholar]
  18. Hugh R., Leifson E.. ( 1953;). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. . J Bacteriol 66:, 24–26.[PubMed]
    [Google Scholar]
  19. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  20. Kéki Zs., Grébner K., Bohus V., Márialigeti K., Tóth E. M.. ( 2013;). Application of special oligotrophic media for cultivation of bacterial communities originated from ultrapure water. . Acta Microbiol Immunol Hung 60:, 345–357. [CrossRef][PubMed]
    [Google Scholar]
  21. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  22. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  23. La Scola B., Mallet M. N., Grimont P. A., Raoult D.. ( 2002;). Description of Afipia birgiae sp. nov. and Afipia massiliensis sp. nov. and recognition of Afipia felis genospecies A. . Int J Syst Evol Microbiol 52:, 1773–1782. [CrossRef][PubMed]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  25. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  26. Ouattara A. S., Assih E. A., Thierry S., Cayol J. L., Labat M., Monroy O., Macarie H.. ( 2003;). Bosea minatitlanensis sp. nov., a strictly aerobic bacterium isolated from an anaerobic digester. . Int J Syst Evol Microbiol 53:, 1247–1251. [CrossRef][PubMed]
    [Google Scholar]
  27. Patterson M. K., Husted G. R., Rutkowski A., Mayette D. C.. ( 1991;). Isolation, identification and microscopic properties of biofilms in high-purity water distribution systems. . Ultrapure Water 8:, 18–23.
    [Google Scholar]
  28. Poindexter J. S.. ( 1981;). Oligotrophy: fast and famine existence. . Adv Microb Ecol 5:, 63–89. [CrossRef]
    [Google Scholar]
  29. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O.. ( 2013;). The silva ribosomal RNA gene database project: improved data processing and web-based tools. . Nucleic Acids Res 41: (Database issue), D590–D596. [CrossRef][PubMed]
    [Google Scholar]
  30. Ramírez-Bahena M. H., Peix A., Rivas R., Camacho M., Rodríguez-Navarro D. N., Mateos P. F., Martínez-Molina E., Willems A., Velázquez E.. ( 2009;). Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. . Int J Syst Evol Microbiol 59:, 1929–1934. [CrossRef][PubMed]
    [Google Scholar]
  31. Reasoner D. J., Geldreich E. E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49:, 1–7.[PubMed]
    [Google Scholar]
  32. Rzhetsky A., Nei M.. ( 1992;). A simple method for estimating and testing minimum-evolution trees. . Mol Biol Evol 9:, 945–967.
    [Google Scholar]
  33. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  34. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  35. Soini S. M., Koskinen K. T., Vilenius M. J., Puhakka J. A.. ( 2002;). Occurrence of bacteria in industrial fluid power systems. . Clean Technol Environ Policy 4:, 26–31. [CrossRef]
    [Google Scholar]
  36. Stead D. E., Sellwood J. E., Wilson J., Viney I.. ( 1992;). Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. . J Appl Microbiol 72:, 315–321. [CrossRef]
    [Google Scholar]
  37. Stevenson B. S., Eichorst S. A., Wertz J. T., Schmidt T. M., Breznak J. A.. ( 2004;). New strategies for cultivation and detection of previously uncultured microbes. . Appl Environ Microbiol 70:, 4748–4755. [CrossRef][PubMed]
    [Google Scholar]
  38. Tamaki H., Sekiguchi Y., Hanada S., Nakamura K., Nomura N., Matsumura M., Kamagata Y.. ( 2005;). Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. . Appl Environ Microbiol 71:, 2162–2169. [CrossRef][PubMed]
    [Google Scholar]
  39. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  40. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  41. Tarrand J. J., Gröschel D. H. M.. ( 1982;). Rapid, modified oxidase test for oxidase-variable bacterial isolates. . J Clin Microbiol 16:, 772–774.[PubMed]
    [Google Scholar]
  42. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  43. Tóth E. M., Schumann P., Borsodi A. K., Kéki Z., Kovács A. L., Márialigeti K.. ( 2008;). Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). . Int J Syst Evol Microbiol 58:, 976–981. [CrossRef][PubMed]
    [Google Scholar]
  44. Tóth E. M., Kéki Zs., Bohus V., Borsodi A. K., Márialigeti K., Schumann P.. ( 2012;). Aquipuribacter hungaricus gen. nov., sp. nov., an actinobacterium isolated from the ultrapure water system of a power plant. . Int J Syst Evol Microbiol 62:, 556–562. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.053843-0
Loading
/content/journal/ijsem/10.1099/ijs.0.053843-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error