1887

Abstract

A Gram-staining-negative, rod-shaped and motile bacterium, designated strain ERB1-3, was isolated from a laboratory-scale activated sludge system treating coke plant effluent using thiocyanate-supplemented growth medium. Strain ERB1-3 was oxidase-positive and weakly catalase-positive. The predominant fatty acids were Cω7 (35.6 %) and Cω6 (29.2 %), and the major respiratory quinone was Q-10. Polar lipids were dominated by sphingoglycolipid and phosphatidylglycerol. Major polyamines were spermidine and -homospermidine. The G+C content of the genomic DNA of strain ERB1-3 was 66.4 mol%. Based on the 16S rRNA gene, strain ERB1-3 exhibited the highest sequence similarity values to DSM 19645 (96.1 %), DSM 19371 (95.1 %) and LMG 24686 (94.8 %) within the family . The novel isolate had some unique chemotaxonomic features that differentiated it from these closely related strains, contained much more Cω6, C 2-OH, C and Cω8 fatty acids and possessed diphosphatidylglycerol only in trace amounts. On the basis of the phenotypic, chemotaxonomic and molecular data, strain ERB1-3 is considered to represent a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain is ERB1-3 ( = DSM 25527 = NCAIM B 02511).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.053736-0
2014-03-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/738.html?itemId=/content/journal/ijsem/10.1099/ijs.0.053736-0&mimeType=html&fmt=ahah

References

  1. Balkwill D. L., Fredrickson J. K., Romine M. F.. ( 2006;). Sphingomonas and related genera. . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 605–629. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E... New York:: Springer;.
    [Google Scholar]
  2. Busse H.-J., Kämpfer P., Denner E. B. M.. ( 1999;). Chemotaxonomic characterisation of Sphingomonas. . J Ind Microbiol Biotechnol 23:, 242–251. [CrossRef][PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  4. Chen C., Zheng Q., Wang Y.-N., Yan X.-J., Hao L.-K., Du X., Jiao N.. ( 2010;). Stakelama pacifica gen. nov., sp. nov., a new member of the family Sphingomonadaceae isolated from the Pacific Ocean. . Int J Syst Evol Microbiol 60:, 2857–2861. [CrossRef][PubMed]
    [Google Scholar]
  5. Claus M.. ( 1992;). A standardised Gram staining procedure. . World J Microbiol Biotechnol 8:, 451–452. [CrossRef]
    [Google Scholar]
  6. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  7. Cowan S. T., Steel K. J.. ( 1974;). Manual for the Identification of Medical Bacteria, , 2nd edn.. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  8. Felföldi T., Székely A. J., Gorál R., Barkács K., Scheirich G., András J., Rácz A., Márialigeti K.. ( 2010;). Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent. . Bioresour Technol 101:, 3406–3414. [CrossRef][PubMed]
    [Google Scholar]
  9. Felföldi T., Kéki Z., Sipos R., Márialigeti K., Tindall B. J., Schumann P., Tóth E. M.. ( 2011;). Ottowia pentelensis sp. nov., a floc-forming betaproteobacterium isolated from an activated sludge system treating coke plant effluent. . Int J Syst Evol Microbiol 61:, 2146–2150. [CrossRef][PubMed]
    [Google Scholar]
  10. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K.. ( 1997;). Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. . Int J Syst Bacteriol 47:, 1129–1133. [CrossRef][PubMed]
    [Google Scholar]
  11. Hasegawa T., Takizawa M., Tanida S.. ( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. . J Gen Appl Microbiol 29:, 319–322. [CrossRef]
    [Google Scholar]
  12. Heimbrook M. E., Wang W. L. L., Campbell G.. ( 1989;). Staining bacterial flagella easily. . J Clin Microbiol 27:, 2612–2615.[PubMed]
    [Google Scholar]
  13. Huang H.-D., Wang W., Ma T., Li G.-Q., Liang F.-L., Liu R.-L.. ( 2009;). Sphingomonas sanxanigenens sp. nov., isolated from soil. . Int J Syst Evol Microbiol 59:, 719–723. [CrossRef][PubMed]
    [Google Scholar]
  14. Hugh R., Leifson E.. ( 1953;). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. . J Bacteriol 66:, 24–26.[PubMed]
    [Google Scholar]
  15. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  16. Kämpfer P., Arun A. B., Young C. C., Busse H. J., Kassmannhuber J., Rosselló-Móra R., Geueke B., Rekha P. D., Chen W. M.. ( 2012;). Sphingomicrobium lutaoense gen. nov., sp. nov., isolated from a coastal hot spring. . Int J Syst Evol Microbiol 62:, 1326–1330. [CrossRef][PubMed]
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  18. Liang Q., Lloyd-Jones G.. ( 2010;). Sphingobium scionense sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from contaminated sawmill soil. . Int J Syst Evol Microbiol 60:, 413–416. [CrossRef][PubMed]
    [Google Scholar]
  19. Maruyama T., Park H.-D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K.. ( 2006;). Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. . Int J Syst Evol Microbiol 56:, 85–89. [CrossRef][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  22. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  23. Stead D. E., Sellwood J. E., Wilson J., Viney I.. ( 1992;). Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. . J Appl Microbiol 72:, 315–321. [CrossRef]
    [Google Scholar]
  24. Takeuchi M., Hamana K., Hiraishi A.. ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  25. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  27. Tarrand J. J., Gröschel D. H. M.. ( 1982;). Rapid, modified oxidase test for oxidase-variable bacterial isolates. . J Clin Microbiol 16:, 772–774.[PubMed]
    [Google Scholar]
  28. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  29. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  30. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  31. Tóth E. M., Schumann P., Borsodi A. K., Kéki Z., Kovács A. L., Márialigeti K.. ( 2008;). Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). . Int J Syst Evol Microbiol 58:, 976–981. [CrossRef][PubMed]
    [Google Scholar]
  32. Uchida H., Hamana K., Miyazaki M., Yoshida T., Nogi Y.. ( 2012;). Parasphingopyxis lamellibrachiae gen. nov., sp. nov., isolated from a marine annelid worm. . Int J Syst Evol Microbiol 62:, 2224–2228. [CrossRef][PubMed]
    [Google Scholar]
  33. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H.. ( 1990;). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. . Microbiol Immunol 34:, 99–119. [CrossRef][PubMed]
    [Google Scholar]
  34. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K.. ( 2002;). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. . Int J Syst Evol Microbiol 52:, 1485–1496. [CrossRef][PubMed]
    [Google Scholar]
  35. Yamada K., Komagata K.. ( 1972;). Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical and physiological characteristics. . J Gen Appl Microbiol 18:, 399–416. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.053736-0
Loading
/content/journal/ijsem/10.1099/ijs.0.053736-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error