1887

Abstract

A Gram-stain-negative, yellow, non-spore-forming, rod-shaped bacterium, designated N7, was isolated from a soil sample collected from a rice field in Jiangsu, China, and was characterized using a polyphasic taxonomic approach. Strain N7 grew optimally at 25–30 °C, pH 6.0–8.0, and in the presence of 1 % NaCl (w/v). 16S rRNA gene sequence analysis indicated that strain N7 was a member of the genus and was closely related to IAM14316 (97.49 %) and CR11 (97.11 %), sharing less than 97 % sequence similarities with other species of the genus . The predominant respiratory quinone of strain N7 was MK-7 and major fatty acids were summed features 3 (Cω6 and/or Cω7), iso-C, C and iso-C 3-OH. The G+C content of the DNA was 40.9±0.5 mol%. The levels of DNA–DNA relatedness between strain N7 and the most closely related species IAM 14316 and CR11 were 21 % and 15 %, respectively. Based on these results, strain N7 is proposed to represent a separate species within the genus . The name sp. nov. is suggested and the type strain is N7 ( = CCTCC AB 2012100 = KACC 16854).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.053603-0
2013-12-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/12/4515.html?itemId=/content/journal/ijsem/10.1099/ijs.0.053603-0&mimeType=html&fmt=ahah

References

  1. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  2. Choi H.-A., Lee S.-S.. ( 2012;). Sphingobacterium kyonggiense sp. nov., isolated from chloroethene-contaminated soil, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii. . Int J Syst Evol Microbiol 62:, 2559–2564. [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  4. Cowan S., Steel K.. ( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  8. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  9. Mandel M., Marmur J.. ( 1968;). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12B:, 195–206. [CrossRef]
    [Google Scholar]
  10. Ohta H., Hattori T.. ( 1983;). Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. . Antonie van Leeuwenhoek 49:, 429–446.[PubMed]
    [Google Scholar]
  11. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  12. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC News Lett 20:, 16.
    [Google Scholar]
  13. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J.. ( 1998;). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov.. Int J Syst Bacteriol 48:, 165–177. [CrossRef][PubMed]
    [Google Scholar]
  14. Suzuki T., Yamasato K.. ( 1994;). Phylogeny of spore-forming lactic acid bacteria based on 16S rRNA gene sequences. . FEMS Microbiol Lett 115:, 13–17. [CrossRef][PubMed]
    [Google Scholar]
  15. Takeuchi M., Yokota A.. ( 1992;). Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. . J Gen Appl Microbiol 38:, 465–482. [CrossRef]
    [Google Scholar]
  16. Tamaoka J., Katayama‐Fujimura Y., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54:, 31–36. [CrossRef]
    [Google Scholar]
  17. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  18. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  19. Wayne L., Brenner D., Colwell R., Grimont P., Kandler O., Krichevsky M., Moore L., Moore W., Murray R.. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  20. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N.. ( 1983;). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: Glucose-Nonfermenting Gram-Negative Rods in CDC Groups IIK-2 and IIb.. Int J Syst Bacteriol 33:, 580–598. [CrossRef]
    [Google Scholar]
  21. Yoo S.-H., Weon H.-Y., Jang H.-B., Kim B.-Y., Kwon S.-W., Go S.-J., Stackebrandt E.. ( 2007;). Sphingobacterium composti sp. nov., isolated from cotton-waste composts. . Int J Syst Evol Microbiol 57:, 1590–1593. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.053603-0
Loading
/content/journal/ijsem/10.1099/ijs.0.053603-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error