1887

Abstract

A horseshoe-shaped, orange-pigmented strain, HMD3055, was isolated from a solar saltern in Korea. Strain HMD3055 grew optimally at 25 °C and with a salt concentration of 3–5 %. The predominant quinone of strain HMD3055 was menaquinone (MK)-7. The major fatty acids of strain HMD3055 were iso-C, summed feature 3 (comprising Cω6 and/or Cω7) and summed feature 9 (iso-Cω9c and/or 10-methyl C). The polar lipids of HMD3055 consisted of phosphatidylethanolamine, one unidentified phospholipid, one unidentified aminolipid and five unidentified polar lipids. The phylogenetic tree based on 16S rRNA gene sequences showed that strain HMD3055 formed a distinct lineage within the genus . Strain HMD3055 was closely related to (95.8 %), HY9 (95.8 %), DSM 745 (93.2 %) and KMM6143 (92.6 %) form a distinct lineage from other members of the genus . The DNA G+C content of strain HMD3055 was 45.6 mol%. On the basis of the evidence presented in this study, it is concluded that strain HMD3055 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HMD3055 ( = KCTC 23150 = CECT 7706).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.053546-0
2014-01-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/11.html?itemId=/content/journal/ijsem/10.1099/ijs.0.053546-0&mimeType=html&fmt=ahah

References

  1. Bernardet J. F., Vancanneyt M., Matte-Tailliez O., Grisez L., Tailliez P., Bizet C., Nowakowski M., Kerouault B., Swings J.. ( 2005;). Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. . Syst Appl Microbiol 28:, 640–660. [CrossRef][PubMed]
    [Google Scholar]
  2. Cho J. C., Giovannoni S. J.. ( 2003;). Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α-Proteobacteria. . Int J Syst Evol Microbiol 53:, 1031–1036. [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D.. ( 1985;). Analysis of isoprenoid quinones. . Methods Microbio 18:, 329–366. [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . 39:, 783–791.
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. Jung Y. T., Lee J. S., Yoon J. H.. ( 2013;). Cyclobacterium caenipelagi sp. nov., isolated from a tidal flat sediment, and emended description of the genus Cyclobacterium. . Int J Syst Evol Microbiol 63:, 3158–3163. [CrossRef][PubMed]
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  9. MacFaddin J. F.. ( 1980;). Biochemical Tests for Identification of Medical Bacteria, , 2nd edn.. Baltimore:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  10. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  11. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  12. Nedashkovskaya O. I., Kim S. B., Lee M. S., Park M. S., Lee K. H., Lysenko A. M., Oh H. W., Mikhailov V. V., Bae K. S.. ( 2005;). Cyclobacterium amurskyense sp. nov., a novel marine bacterium isolated from sea water. . Int J Syst Evol Microbiol 55:, 2391–2394. [CrossRef][PubMed]
    [Google Scholar]
  13. Raj H. D., Maloy S. R.. ( 1990;). Proposal of Cyclobacterium marinus gen. nov., comb. nov. for a marine bacterium previously assigned to the genus Flectobacillus. . Int J Syst Bacteriol 40:, 337–347. [CrossRef]
    [Google Scholar]
  14. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  15. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . Technical Note 101. Newark, DE:: MIDI, Inc.;
    [Google Scholar]
  16. Shivaji S., Reddy P. V., Rao S. S., Begum Z., Manasa P., Srinivas T. N.. ( 2012;). Cyclobacterium qasimii sp. nov., a psychrotolerant bacterium isolated from Arctic marine sediment. . Int J Syst Evol Microbiol 62:, 2133–2139. [CrossRef][PubMed]
    [Google Scholar]
  17. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  18. Ying J. Y., Wang B. J., Yang S. S., Liu S. J.. ( 2006;). Cyclobacterium lianum sp. nov., a marine bacterium isolated from sediment of an oilfield in the South China Sea, and emended description of the genus Cyclobacterium. . Int J Syst Evol Microbiol 56:, 2927–2930. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.053546-0
Loading
/content/journal/ijsem/10.1099/ijs.0.053546-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error