1887

Abstract

Two strains, designated GCR0103 and GYR3121, were isolated from seawater of the Saemangeum Embankment in Jeollabuk-do, Korea. The cells of the two strains were Gram-reaction-negative and non-motile, and formed multicellular filaments. The colonies of the two strains were pink-pigmented and able to grow at 15–37 °C (optimum 25 °C) on R2A and NA medium. Strains GCR0103 and GYR3121 grew at pH 6.5–10 (optimum pH 7.5) and pH 5.5–9.5 (optimum pH 7.5), and within NaCl ranges of 0–0.4 % and 0–1 %, respectively. The polar lipid profiles of the two strains contained phosphatidylethanolamine, five unknown aminolipids, an unknown phospholipid and four or five unknown lipids. The DNA G+C contents of strains GCR0103 and GYR3121 were 56.0 and 54.5 mol%, respectively. The respiratory quinone detected in both strains was MK-7. The 16S rRNA gene sequence similarity between GCR0103 and GYR3121 was 95.5 %. The 16S rRNA gene sequence similarities of the two strains to closely related reference strains were less than 89 %. Phylogenetic analysis based on 16S rRNA genes showed that GCR0103 and GYR3121 formed a distinct phyletic line in the family . On the basis of the phenotypic, chemotaxonomic and phylogenetic properties, strains GCR0103 and GYR3121 represent two novel species in a new genus within the family , for which the names gen. nov., sp. nov. and sp. nov. are proposed. The type strain of is GCR0103 ( = KACC 16453 = JCM 17927) and the type strain of is GYR3121 ( = KACC 16447 = JCM 17925).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.053439-0
2013-12-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/12/4508.html?itemId=/content/journal/ijsem/10.1099/ijs.0.053439-0&mimeType=html&fmt=ahah

References

  1. Anandham R., Kwon S. W., Weon H. Y., Kim S. J., Kim Y. S., Gandhi P. I., Kim Y. K., Jee H. J.. ( 2011;). Larkinella bovis sp. nov., isolated from fermented bovine products, and emended descriptions of the genus Larkinella and of Larkinella insperata Vancanneyt et al. 2006. . Int J Syst Evol Microbiol 61:, 30–34. [CrossRef][PubMed]
    [Google Scholar]
  2. Bowman J. P.. ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:, 1861–1868.[PubMed]
    [Google Scholar]
  3. Collins M.. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.[PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Filippini M., Svercel M., Laczko E., Kaech A., Ziegler U., Bagheri H. C.. ( 2011;). Fibrella aestuarina gen. nov., sp. nov., a filamentous bacterium of the family Cytophagaceae isolated from a tidal flat, and emended description of the genus Rudanella Weon et al. 2008. . Int J Syst Evol Microbiol 61:, 184–189. [CrossRef][PubMed]
    [Google Scholar]
  7. Finster K. W., Herbert R. A., Lomstein B. A.. ( 2009;). Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma. . Int J Syst Evol Microbiol 59:, 839–844. [CrossRef][PubMed]
    [Google Scholar]
  8. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  11. Kulichevskaya I., Zaichikova M., Detkova E., Dedysh S., Zavarzin G.. ( 2009;). Larkinella arboricola sp. nov., a new spiral-shaped bacterium of the phylum Bacteroidetes isolated from the microbial community of decomposing wood. . Microbiology (English translation of Mikrobiologiya) 78:, 741–746. [CrossRef]
    [Google Scholar]
  12. Marchesi J. R., Sato T., Weightman A. J., Martin T. A., Fry J. C., Hiom S. J., Dymock D., Wade W. G.. ( 1998;). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. . Appl Environ Microbiol 64:, 795–799.[PubMed]
    [Google Scholar]
  13. Minnikin D., O'donnell A., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  14. Nakagawa Y.. ( 2011;). Family I. Cytophagaceae Stanier 1940, 630AL. . Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4:, pp. 371–423. Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L, Ludwig W., Whitman W. B... New York:: Springer;.[PubMed]
    [Google Scholar]
  15. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  16. Scherer P., Kneifel H.. ( 1983;). Distribution of polyamines in methanogenic bacteria. . J Bacteriol 154:, 1315–1322.[PubMed]
    [Google Scholar]
  17. Stackebrandt E., Goebel B.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  18. Tamaoka J., Katayama-Fujimura Y., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Microbiol 54:, 31–36. [CrossRef]
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  21. Tittsler R. P., Sandholzer L. A.. ( 1936;). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31:, 575–580.[PubMed]
    [Google Scholar]
  22. Weon H. Y., Noh H. J., Son J. A., Jang H. B., Kim B. Y., Kwon S. W., Stackebrandt E.. ( 2008;). Rudanella lutea gen. nov., sp. nov., isolated from an air sample in Korea. . Int J Syst Evol Microbiol 58:, 474–478. [CrossRef][PubMed]
    [Google Scholar]
  23. Yang P., De Vos P., Kersters K., Swings J.. ( 1993;). Polyamine patterns as chemotaxonomic markers for the genus Xanthomonas. . Int J Syst Bacteriol 43:, 709–714. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.053439-0
Loading
/content/journal/ijsem/10.1099/ijs.0.053439-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error