1887

Abstract

A novel Gram-staining-positive actinobacterium, designated H85-3, was isolated from a sea sediment sample and its taxonomic position was investigated by a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain H85-3 was closely related to the members of the genus with pairwise sequence similarities of 97.4–98.6 %. The peptidoglycan of strain H85-3 was found to be of the A4α type with lysine as the diagnostic diamino acid. The menaquinones were MK-9, MK-10 and MK-8 (56 : 30 : 14) and the major cellular fatty acids were anteiso-C, iso-C and anteiso-C. These data supported the affiliation of strain H85-3 to the genus . Meanwhile, the results of DNA–DNA hybridization, along with the differences in some phenotypic characteristics, indicated that strain H85-3 should be distinguished from the recognized species of the genus . Therefore, strain H85-3 represents a novel species of the genus , for which the name sp. nov. is proposed; the type strain is H85-3 ( = NBRC 109021 = DSM 26152). An emended description of the genus is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.053272-0
2013-12-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/12/4760.html?itemId=/content/journal/ijsem/10.1099/ijs.0.053272-0&mimeType=html&fmt=ahah

References

  1. Baik K. S., Lim C. H., Park S. C., Choe H. N., Kim H. J., Kim D., Lee K. H., Seong C. N.. ( 2011;). Zhihengliuella aestuarii sp. nov., isolated from tidal flat sediment. . Int J Syst Evol Microbiol 61:, 1671–1676. [CrossRef][PubMed]
    [Google Scholar]
  2. Chen Y. G., Tang S. K., Zhang Y. Q., Liu Z. X., Chen Q. H., He J. W., Cui X. L., Li W. J.. ( 2010;). Zhihengliuella salsuginis sp. nov., a moderately halophilic actinobacterium from a subterranean brine. . Extremophiles 14:, 397–402. [CrossRef][PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. Hamada M., Tamura T., Yamamura H., Suzuki K., Hayakawa M.. ( 2012a;). Lysinimicrobium mangrovi gen. nov., sp. nov., an actinobacterium isolated from the rhizosphere of a mangrove. . Int J Syst Evol Microbiol 62:, 1731–1735. [CrossRef][PubMed]
    [Google Scholar]
  8. Hamada M., Yamamura H., Komukai C., Tamura T., Suzuki K., Hayakawa M.. ( 2012b;). Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium. . J Antibiot (Tokyo) 65:, 427–431. [CrossRef][PubMed]
    [Google Scholar]
  9. Honda S., Akao E., Suzuki S., Okuda M., Kakehi K., Nakamura J.. ( 1989;). High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives. . Anal Biochem 180:, 351–357. [CrossRef][PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  12. Minnikin D. E., Alshamaony L., Goodfellow M.. ( 1975;). Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. . J Gen Microbiol 88:, 200–204. [CrossRef][PubMed]
    [Google Scholar]
  13. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  14. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  15. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  16. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  17. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  19. Tang S. K., Wang Y., Chen Y., Lou K., Cao L. L., Xu L. H., Li W. J.. ( 2009;). Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. . Int J Syst Evol Microbiol 59:, 2025–2032. [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  21. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  22. Yang X., Zhao Y., Wang Q., Wang H., Mei Q.. ( 2005;). Analysis of the monosaccharide components in Angelica polysaccharides by high performance liquid chromatography. . Anal Sci 21:, 1177–1180. [CrossRef][PubMed]
    [Google Scholar]
  23. Zhang Y. Q., Schumann P., Yu L. Y., Liu H. Y., Zhang Y. Q., Xu L. H., Stackebrandt E., Jiang C. L., Li W. J.. ( 2007;). Zhihengliuella halotolerans gen. nov., sp. nov., a novel member of the family Micrococcaceae. . Int J Syst Evol Microbiol 57:, 1018–1023. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.053272-0
Loading
/content/journal/ijsem/10.1099/ijs.0.053272-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error