1887

Abstract

Two halophilic archaeal strains, YC20 and XD15, were isolated from a marine solar saltern and an inland salt lake in China. Both had pleomorphic cells that lysed in distilled water, stained Gram-negative and formed red-pigmented colonies. They were neutrophilic, requiring at least 100 g NaCl l and 0.5–95 g MgCl l for growth at the optimum growth temperature of 37 °C. The major polar lipids of the two strains were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulfate (PGS) and two major glycolipids chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1) and mannosyl glucosyl diether (DGD-1), respectively. Trace amounts of two unidentified glycolipids were also detected. The 16S rRNA gene sequences of the two strains were 99.5 % identical and showed 94.0–95.9 % similarity to the most closely related members of the genus of the family . The gene sequence similarity between strains YC20 and XD15 was 98.2 % and these sequences showed 89.6–92.8 % similarity to those of the most closely related members of the genus . The DNA G+C contents of strains YC20 and XD15 were 65.8 mol% and 65.4 mol%, respectively. The DNA–DNA hybridization value between strain YC20 and strain XD15 was 92 %, and the two strains showed low DNA–DNA relatedness to members of the genus . The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains YC20 and XD15 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is YC20 ( = CGMCC 1.12120 = JCM 18361) and the other strain is XD15 ( = CGMCC 1.12236 = JCM 18648).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.053066-0
2013-11-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/3975.html?itemId=/content/journal/ijsem/10.1099/ijs.0.053066-0&mimeType=html&fmt=ahah

References

  1. Castillo A. M., Gutiérrez M. C., Kamekura M., Ma Y. H., Cowan D. A., Jones B. E., Grant W. D., Ventosa A.. ( 2006a;). Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. . Int J Syst Evol Microbiol 56:, 765–770. [CrossRef][PubMed]
    [Google Scholar]
  2. Castillo A. M., Gutiérrez M. C., Kamekura M., Xue Y. F., Ma Y. H., Cowan D. A., Jones B. E., Grant W. D., Ventosa A.. ( 2006b;). Halostagnicola larsenii gen. nov., sp. nov., an extremely halophilic archaeon from a saline lake in Inner Mongolia, China. . Int J Syst Evol Microbiol 56:, 1519–1524. [CrossRef][PubMed]
    [Google Scholar]
  3. Cui H. L., Lin Z. Y., Dong Y., Zhou P. J., Liu S. J.. ( 2007;). Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. . Int J Syst Evol Microbiol 57:, 2204–2206. [CrossRef][PubMed]
    [Google Scholar]
  4. Cui H.-L., Zhou P.-J., Oren A., Liu S.-J.. ( 2009;). Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. . Extremophiles 13:, 31–37. [CrossRef][PubMed]
    [Google Scholar]
  5. Cui H.-L., Gao X., Sun F.-F., Dong Y., Xu X.-W., Zhou Y.-G., Liu H.-C., Oren A., Zhou P.-J.. ( 2010a;). Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. . Int J Syst Evol Microbiol 60:, 1366–1371. [CrossRef][PubMed]
    [Google Scholar]
  6. <1?tic r?> Cui H.-L., Gao X., Yang X., Xu X.-W.. ( 2010b;). Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. . Extremophiles 14:, 493–499. [CrossRef][PubMed]
    [Google Scholar]
  7. Cui H.-L., Li X.-Y., Gao X., Xu X.-W., Zhou Y.-G., Liu H.-C., Oren A., Zhou P.-J.. ( 2010c;). Halopelagius inordinatus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. . Int J Syst Evol Microbiol 60:, 2089–2093. [CrossRef][PubMed]
    [Google Scholar]
  8. Cui H.-L., Gao X., Yang X., Xu X.-W.. ( 2011a;). Halolamina pelagica gen. nov., sp. nov., a new member of the family Halobacteriaceae. . Int J Syst Evol Microbiol 61:, 1617–1621. [CrossRef][PubMed]
    [Google Scholar]
  9. Cui H.-L., Yang X., Gao X., Xu X.-W.. ( 2011b;). Halobellus clavatus gen. nov., sp. nov. and Halorientalis regularis gen. nov., sp. nov., two new members of the family Halobacteriaceae. . Int J Syst Evol Microbiol 61:, 2682–2689. [CrossRef][PubMed]
    [Google Scholar]
  10. Cui H.-L., Yang X., Mou Y. Z.. ( 2011c;). Salinarchaeum laminariae gen. nov., sp. nov.: a new member of the family Halobacteriaceae isolated from salted brown alga Laminaria. . Extremophiles 15:, 625–631. [CrossRef][PubMed]
    [Google Scholar]
  11. Cui H.-L., Mou Y. Z., Yang X., Zhou Y. G., Liu H. C., Zhou P. J.. ( 2012a;). Halorubellus salinus gen. nov., sp. nov. and Halorubellus litoreus sp. nov., novel halophilic archaea isolated from a marine solar saltern. . Syst Appl Microbiol 35:, 30–34. [CrossRef][PubMed]
    [Google Scholar]
  12. Cui H.-L., Yang X., Zhou Y. G., Liu H. C., Zhou P. J., Dyall-Smith M. L.. ( 2012b;). Halobellus limi sp. nov. and Halobellus salinus sp. nov., isolated from two marine solar salterns. . Int J Syst Evol Microbiol 62:, 1307–1313. [CrossRef][PubMed]
    [Google Scholar]
  13. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  14. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  15. Gonzalez C., Gutierrez C., Ramirez C.. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef][PubMed]
    [Google Scholar]
  16. Gutiérrez C., González C.. ( 1972;). Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. . Appl Microbiol 24:, 516–517.[PubMed]
    [Google Scholar]
  17. Gutiérrez M. C., Castillo A. M., Kamekura M., Xue Y. F., Ma Y. H., Cowan D. A., Jones B. E., Grant W. D., Ventosa A.. ( 2007;). Halopiger xanaduensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from saline Lake Shangmatala in Inner Mongolia, China. . Int J Syst Evol Microbiol 57:, 1402–1407. [CrossRef][PubMed]
    [Google Scholar]
  18. Huß V. A., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  19. Itoh T., Yamaguchi T., Zhou P. J., Takashina T.. ( 2005;). Natronolimnobius baerhuensis gen. nov., sp. nov. and Natronolimnobius innermongolicus sp. nov., novel haloalkaliphilic archaea isolated from soda lakes in Inner Mongolia, China. . Extremophiles 9:, 111–116. [CrossRef][PubMed]
    [Google Scholar]
  20. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  21. McDade J. J., Weaver R. H.. ( 1959;). Rapid methods for the detection of gelatin hydrolysis. . J Bacteriol 77:, 60–64.[PubMed]
    [Google Scholar]
  22. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T.. ( 2010;). Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B′ (rpoB′) gene. . Int J Syst Evol Microbiol 60:, 2398–2408. [CrossRef][PubMed]
    [Google Scholar]
  23. Mou Y. Z., Qiu X. X., Zhao M. L., Cui H. L., Oh D., Dyall-Smith M. L.. ( 2012;). Halohasta litorea gen. nov. sp. nov., and Halohasta litchfieldiae sp. nov., isolated from the Daliang aquaculture farm, China and from Deep Lake, Antarctica, respectively. . Extremophiles 16:, 895–901. [CrossRef][PubMed]
    [Google Scholar]
  24. Oren A., Ventosa A., Grant W. D.. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  25. Owen R. J., Pitcher D.. ( 1985;). Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. . In Chemical Methods in Bacterial Systematics, pp. 67–93. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  26. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  28. Xu Y., Zhou P. J., Tian X. Y.. ( 1999;). Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov.. Int J Syst Bacteriol 49:, 261–266. [CrossRef][PubMed]
    [Google Scholar]
  29. Zheng M. P., Tang J. Y., Liu J. Y., Zhang F. S.. ( 1993;). Chinese saline lakes. . Hydrobiologia 267:, 23–36. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.053066-0
Loading
/content/journal/ijsem/10.1099/ijs.0.053066-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error