1887

Abstract

A Gram-stain-negative, short rod-shaped bacterium, designated 26DY36, was isolated from a deep-sea sediment sample collected from the North Atlantic Rise. The isolate required NaCl and grew best with 2 % (w/v) sea salts at a temperature of 30–35 °C and at pH 7.0. It formed yellow colonies, produced carotenoid-like pigments and did not produce bacteriochlorophyll . Strain 26DY36 was positive for hydrolysis of aesculin, gelatin, tyrosine and Tweens 20, 40, 60 and 80, but negative for hydrolysis of casein, DNA and starch. The major respiratory quinone was ubiquinone-10. The major polar lipid profile consisted of sphingoglycolipid, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and two unidentified glycolipids. The principal fatty acids (>5 %) were Cω7, Cω6, C 2-OH and C. The genomic DNA G+C content was 59.4 mol%. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain 26DY36 should be assigned to the genus . 16S rRNA gene sequence similarities between the isolate and the type strains of species of the genus were in the range 92.7–96.5 %. On the basis of phenotypic and genotypic data, strain 26DY36 represents a novel species of the genus , for which the name sp. nov. (type strain, 26DY36 = CGMCC 1.12411 = JCM 18865) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.052951-0
2014-01-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/116.html?itemId=/content/journal/ijsem/10.1099/ijs.0.052951-0&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  2. Dong X.-Z., Cai M.-Y.. ( 2001;). Determinative Manual for Routine Bacteriology. Beijing: Scientific Press (English translation);.
    [Google Scholar]
  3. Fan Z. Y., Xiao Y. P., Hui W., Tian G. R., Lee J. S., Lee K. C., Quan Z. X.. ( 2011;). Altererythrobacter dongtanensis sp. nov., isolated from a tidal flat. . Int J Syst Evol Microbiol 61:, 2035–2039. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  6. Hildebrand D. C., Palleroni N. J., Hendson M., Toth J., Johnson J. L.. ( 1994;). Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. . Int J Syst Bacteriol 44:, 410–415. [CrossRef][PubMed]
    [Google Scholar]
  7. Jeong S. H., Jin H. M., Lee H. J., Jeon C. O.. ( 2013;). Altererythrobacter gangjinensis sp. nov., a marine bacterium isolated from a tidal flat. . Int J Syst Evol Microbiol 63:, 971–976. [CrossRef][PubMed]
    [Google Scholar]
  8. Kamekura M., Kates M.. ( 1988;). Lipids of halophilic archaebacteria. . In Halophilic Bacteria II, pp. 25–54. Edited by Rodriguez-Valera F... Boca Raton:: CRC Press;.
    [Google Scholar]
  9. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  11. Kumar N. R., Nair S., Langer S., Busse H. J., Kämpfer P.. ( 2008;). Altererythrobacter indicus sp. nov., isolated from wild rice (Porteresia coarctata Tateoka). . Int J Syst Evol Microbiol 58:, 839–844. [CrossRef][PubMed]
    [Google Scholar]
  12. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  13. Kwon K. K., Woo J.-H., Yang S.-H., Kang J.-H., Kang S. G., Kim S.-J., Sato T., Kato C.. ( 2007;). Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov.. Int J Syst Evol Microbiol 57:, 2207–2211. [CrossRef][PubMed]
    [Google Scholar]
  14. Lai Q., Yuan J., Shao Z.. ( 2009;). Altererythrobacter marinus sp. nov., isolated from deep seawater. . Int J Syst Evol Microbiol 59:, 2973–2976. [CrossRef][PubMed]
    [Google Scholar]
  15. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  16. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  17. Matsumoto M., Iwama D., Arakaki A., Tanaka A., Tanaka T., Miyashita H., Matsunaga T.. ( 2011;). Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. . Int J Syst Evol Microbiol 61:, 2956–2961. [CrossRef][PubMed]
    [Google Scholar]
  18. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  19. Nedashkovskaya O. I., Cho S. H., Joung Y., Joh K., Kim M. N., Shin K. S., Oh H. W., Bae K. S., Mikhailov V. V., Kim S. B.. ( 2013;). Altererythrobacter troitsensis sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. . Int J Syst Evol Microbiol 63:, 93–97. [CrossRef][PubMed]
    [Google Scholar]
  20. Park Y. D., Baik K. S., Yi H., Bae K. S., Chun J.. ( 2005;). Pseudoalteromonas byunsanensis sp. nov., isolated from tidal flat sediment in Korea. . Int J Syst Evol Microbiol 55:, 2519–2523. [CrossRef][PubMed]
    [Google Scholar]
  21. Park S. C., Baik K. S., Choe H. N., Lim C. H., Kim H. J., Ka J. O., Seong C. N.. ( 2011;). Altererythrobacter namhicola sp. nov. and Altererythrobacter aestuarii sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 61:, 709–715. [CrossRef][PubMed]
    [Google Scholar]
  22. Rainey F. A., Silva J., Nobre M. F., Silva M. T., da Costa M. S.. ( 2003;). Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. . Int J Syst Evol Microbiol 53:, 35–41. [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Seo S. H., Lee S. D.. ( 2010;). Altererythrobacter marensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 60:, 307–311. [CrossRef][PubMed]
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  27. Xu X.-W., Wu Y.-H., Zhou Z., Wang C.-S., Zhou Y.-G., Zhang H.-B., Wang Y., Wu M.. ( 2007;). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. . Int J Syst Evol Microbiol 57:, 1619–1624. [CrossRef][PubMed]
    [Google Scholar]
  28. Xue X., Zhang K., Cai F., Dai J., Wang Y., Rahman E., Peng F., Fang C.. ( 2012;). Altererythrobacter xinjiangensis sp. nov., isolated from desert sand, and emended description of the genus Altererythrobacter. . Int J Syst Evol Microbiol 62:, 28–32. [CrossRef][PubMed]
    [Google Scholar]
  29. Yoon J.-H., Kang K. H., Yeo S.-H., Oh T.-K.. ( 2005;). Erythrobacter luteolus sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 55:, 1167–1170. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.052951-0
Loading
/content/journal/ijsem/10.1099/ijs.0.052951-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error