1887

Abstract

Common bean ( L.) can establish symbiotic associations with several species; however, the effectiveness of most strains at fixing nitrogen under field conditions is very low. PRF 81 is a very effective strain, usually referred to as and used successfully in thousands of doses of commercial inoculants for the common bean crop in Brazil; it has shown high rates of nitrogen fixation in all areas representative of the crop in the country. Here, we present results that indicate that PRF 81, although it belongs to the ‘ group’, which includes 10 species, , , , , , , , , and , represents a novel species. Several morpho-physiological traits differentiated PRF 81 from related species. Differences were also confirmed in the analysis of rep-PCR (sharing less than 45 % similarity with the other species), MLSA with , and genes, and DNA–DNA hybridization. The novel species, for which we propose the name sp. nov., is able to establish effective root nodule symbioses with , , , and . The type strain is PRF 81 ( = CNPSo 122 = SEMIA 4080 = IPR-Pv81 = WDCM 440).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.052928-0
2013-11-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4167.html?itemId=/content/journal/ijsem/10.1099/ijs.0.052928-0&mimeType=html&fmt=ahah

References

  1. Chen W.-X., Tan Z.-Y., Gao J.-L., Li Y., Wang E.-T.. ( 1997;). Rhizobium hainanense sp. nov., isolated from tropical legumes. . Int J Syst Bacteriol 47:, 870–873. [CrossRef][PubMed]
    [Google Scholar]
  2. Coenye T., Vandamme P., Govan J. R., LiPuma J. J.. ( 2001;). Taxonomy and identification of the Burkholderia cepacia complex. . J Clin Microbiol 39:, 3427–3436. [CrossRef][PubMed]
    [Google Scholar]
  3. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Gomes D. F., Batista J. S. D., Torres A. R., de Souza Andrade D., Galli-Terasawa L. V., Hungria M.. ( 2012;). Two-dimensional proteome reference map of Rhizobium tropici PRF 81 reveals several symbiotic determinants and strong resemblance with agrobacteria. . Proteomics 12:, 859–863. [CrossRef][PubMed]
    [Google Scholar]
  6. Graham P. H.. ( 1981;). Some problems of nodulation and symbiotic nitrogen-fixation in Phaseolus vulgaris L. – a review. . Field Crops Res 4:, 93–112. [CrossRef]
    [Google Scholar]
  7. Gu C. T., Wang E. T., Tian C. F., Han T. X., Chen W. F., Sui X. H., Chen W. X.. ( 2008;). Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. . Int J Syst Evol Microbiol 58:, 1364–1368. [CrossRef][PubMed]
    [Google Scholar]
  8. Han T. X., Wang E. T., Wu L. J., Chen W. F., Gu J. G., Gu C. T., Tian C. F., Chen W. X.. ( 2008;). Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. . Int J Syst Evol Microbiol 58:, 1693–1699. [CrossRef][PubMed]
    [Google Scholar]
  9. Hardarson G.. ( 1993;). Methods for enhancing symbiotic nitrogen-fixation. . Plant Soil 152:, 1–17. [CrossRef]
    [Google Scholar]
  10. Hungria M., Andrade D. S., Chueire L. M. O., Probanza A., Guttierrez-Mañero F. J., Megías M.. ( 2000;). Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. . Soil Biol Biochem 32:, 1515–1528. [CrossRef]
    [Google Scholar]
  11. Hungria M., Chueire L. M. O., Coca R. G., Megías M.. ( 2001;). Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil. . Soil Biol Biochem 33:, 1349–1361. [CrossRef]
    [Google Scholar]
  12. Hungria M., Campo R. J., Mendes I. C.. ( 2003;). Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. . Biol Fertil Soils 39:, 88–93. [CrossRef]
    [Google Scholar]
  13. Jordan D. C.. ( 1984;). Family III. Rhizobiaceae Conn 1938. . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 234–235. Edited by Krieg N. R., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  14. Konstantinidis K. T., Ramette A., Tiedje J. M.. ( 2006;). Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. . Appl Environ Microbiol 72:, 7286–7293. [CrossRef][PubMed]
    [Google Scholar]
  15. Martens M., Delaere M., Coopman R., De Vos P., Gillis M., Willems A.. ( 2007;). Multilocus sequence analysis of Ensifer and related taxa. . Int J Syst Evol Microbiol 57:, 489–503. [CrossRef][PubMed]
    [Google Scholar]
  16. Martínez-Romero E.. ( 2003;). Diversity of Rhizobium-Phaseolus vulgaris symbiosis: overview and perspectives. . Plant Soil 252:, 11–23. [CrossRef]
    [Google Scholar]
  17. Martínez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A.. ( 1991;). Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. . Int J Syst Bacteriol 41:, 417–426. [CrossRef][PubMed]
    [Google Scholar]
  18. Menna P., Barcellos F. G., Hungria M.. ( 2009;). Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. . Int J Syst Evol Microbiol 59:, 2934–2950. [CrossRef][PubMed]
    [Google Scholar]
  19. Michiels J., Dombrecht B., Vermeiren N., Xi C., Luyten E., Vanderleyden J.. ( 1998;). Phaseolus vulgaris is a non-selective host for nodulation. . FEMS Microbiol Ecol 26:, 193–205. [CrossRef]
    [Google Scholar]
  20. Ormeño-Orrillo E., Menna P., Almeida L. G., Ollero F. J., Nicolás M. F., Pains Rodrigues E., Shigueyoshi Nakatani A., Silva Batista J. S., Oliveira Chueire L. M.. & other authors ( 2012;). Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). . BMC Genomics 13:, 735. [CrossRef][PubMed]
    [Google Scholar]
  21. Pinto F. G. S., Hungria M., Mercante F. M.. ( 2007;). Polyphasic characterization of Brazilian Rhizobium tropici strains effective in fixing N2 with common bean (Phaseolus vulgaris L.). . Soil Biol Biochem 39:, 1851–1864. [CrossRef]
    [Google Scholar]
  22. Ribeiro R. A., Barcellos F. G., Thompson F. L., Hungria M.. ( 2009;). Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity. . Res Microbiol 160:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  23. Ribeiro R. A., Rogel M. A., López-López A., Ormeño-Orrillo E., Barcellos F. G., Martínez J., Thompson F. L., Martínez-Romero E., Hungria M.. ( 2012;). Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov.. Int J Syst Evol Microbiol 62:, 1179–1184. [CrossRef][PubMed]
    [Google Scholar]
  24. Rincón-Rosales R., Villalobos-Escobedo J. M., Rogel M. A., Martínez J., Ormeño-Orrillo E., Martínez-Romero E.. ( 2013;). Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora. . Int J Syst Evol Microbiol 63:, 3423–3429. [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Stocco P., Santos J. C. P., Vargas V. P., Hungria M.. ( 2008;). Avaliação da biodiversidade de rizóbios simbiontes do feijoeiro (Phaseolus vulgaris L.) em Santa Catarina. . Rev Bras Cienc Solo 32:, 1107–1120 (in Portuguese). [CrossRef]
    [Google Scholar]
  27. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10:, 512–526.[PubMed]
    [Google Scholar]
  28. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  29. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W.. ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef][PubMed]
    [Google Scholar]
  30. Valverde A., Igual J. M., Peix A., Cervantes E., Velázquez E.. ( 2006;). Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. . Int J Syst Evol Microbiol 56:, 2631–2637. [CrossRef][PubMed]
    [Google Scholar]
  31. Velázquez E., Palomo J. L., Rivas R., Guerra H., Peix A., Trujillo M. E., García-Benavides P., Mateos P. F., Wabiko H., Martínez-Molina E.. ( 2010;). Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes. . Syst Appl Microbiol 33:, 247–251. [CrossRef][PubMed]
    [Google Scholar]
  32. Wang E. T., Martínez-Romero E.. ( 2000;). Phylogeny of root- and stem-nodule bacteria associated with legumes. . In Prokaryotic Nitrogen Fixation: A Model System for the Analysis of a Biological Process, pp. 177–186. Edited by Triplett E. W... Wymondham, UK:: Horizon Scientific Press;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.052928-0
Loading
/content/journal/ijsem/10.1099/ijs.0.052928-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error