1887

Abstract

A coccal-shaped organism, designated 516, was isolated from (fermented broccoli stems), a traditional fermented food in Taiwan. 16S rRNA gene sequencing results showed that strain 516 had 98.9 % sequence similarity to that of the type strain NBRC 100934. Comparison of three housekeeping genes, , and , revealed that strain 516 was well separated from NBRC 100934. DNA–DNA hybridization studies indicated that strain 516 had low DNA relatedness with NBRC 100934 (46.1 %). The DNA G+C content of strain 516 was 38.1 mol% and the major fatty acids were C (22.7 %), C cyclo ω8 (17.9 %) and summed feature 7 (29.0 %). Based on the evidence, strain 516 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 516 ( = NBRC 109475 = BCRC 80576).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.052811-0
2014-01-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/146.html?itemId=/content/journal/ijsem/10.1099/ijs.0.052811-0&mimeType=html&fmt=ahah

References

  1. Aguado-Urda M., López-Campos G. H., Blanco M. M., Fernández-Garayzábal J. F., Cutuli M. T., Aspiroz C., López-Alonso V., Gibello A.. ( 2011;). Genome sequence of Lactococcus garvieae 21881, isolated in a case of human septicemia. . J Bacteriol 193:, 4033–4034. [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  3. Cai Y., Yang J., Pang H., Kitahara M.. ( 2011;). Lactococcus fujiensis sp. nov., a lactic acid bacterium isolated from vegetable matter. . Int J Syst Evol Microbiol 61:, 1590–1594. [CrossRef][PubMed]
    [Google Scholar]
  4. Chen Y. S., Yanagida F., Hsu J. S.. ( 2006;). Isolation and characterization of lactic acid bacteria from suan-tsai (fermented mustard), a traditional fermented food in Taiwan. . J Appl Microbiol 101:, 125–130. [CrossRef][PubMed]
    [Google Scholar]
  5. Chen Y. S., Miyashita M., Suzuki K. I., Sato H., Hsu J. S., Yanagida F.. ( 2010;). Lactobacillus pobuzihii sp. nov., isolated from pobuzihi (fermented cummingcordia). . Int J Syst Evol Microbiol 60:, 1914–1917. [CrossRef][PubMed]
    [Google Scholar]
  6. Chen Y. S., Chang C. H., Pan S. F., Wang L. T., Chang Y. C., Wu H. C., Yanagida F.. ( 2013;). Lactococcus taiwanensis sp. nov., a lactic acid bacterium isolated from fresh cummingcordia. . Int J Syst Evol Microbiol 63:, 2405–2409. [CrossRef][PubMed]
    [Google Scholar]
  7. Cho S. L., Nam S. W., Yoon J. H., Lee J. S., Sukhoom A., Kim W.. ( 2008;). Lactococcus chungangensis sp. nov., a lactic acid bacterium isolated from activated sludge foam. . Int J Syst Evol Microbiol 58:, 1844–1849. [CrossRef][PubMed]
    [Google Scholar]
  8. Collins M. D., Farrow J. A., Phillips B. A., Kandler O.. ( 1983;). Streptococcus garvieae sp. nov. and Streptococcus plantarum sp. nov.. J Gen Microbiol 129:, 3427–3431.[PubMed]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  10. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  11. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  12. Fitch W. M.. ( 1977;). On the problem of discovering the most parsimonious tree. . Am Nat 111:, 223–257. [CrossRef]
    [Google Scholar]
  13. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  14. Hamada M., Otoguro M., Yamamura H., Tamura T., Suzuki K., Hayakawa M.. ( 2010;). Luteimicrobium subarcticum gen. nov., sp. nov., a new member of the suborder Micrococcineae. . Int J Syst Evol Microbiol 60:, 796–800. [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  16. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J.. ( 2005;). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. . Microbiology 151:, 2141–2150. [CrossRef][PubMed]
    [Google Scholar]
  17. Pérez T., Balcázar J. L., Peix A., Valverde A., Velázquez E., de Blas I., Ruiz-Zarzuela I.. ( 2011;). Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). . Int J Syst Evol Microbiol 61:, 1894–1898. [CrossRef][PubMed]
    [Google Scholar]
  18. Rahkila R., Nieminen T., Johansson P., Säde E., Björkroth J.. ( 2012;). Characterization and evaluation of the spoilage potential of Lactococcus piscium isolates from modified atmosphere packaged meat. . Int J Food Microbiol 156:, 50–59. [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  21. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  24. Wang L.-T., Lee F.-L., Tai C.-J., Yokota A., Kuo H.-P.. ( 2007;). Reclassification of Bacillus axarquiensis Ruiz-Garcia et al. 2005 and Bacillus malacitensis Ruiz-Garcia et al. 2005 as later heterotypic synonyms of Bacillus mojavensis Roberts et al. 1994. . Int J Syst Evol Microbiol 57:, 1663–1667. [CrossRef][PubMed]
    [Google Scholar]
  25. Williams A. M., Fryer J. L., Collins M. D.. ( 1990;). Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish. . FEMS Microbiol Lett 68:, 109–113. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.052811-0
Loading
/content/journal/ijsem/10.1099/ijs.0.052811-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error