1887

Abstract

A nitrogen-fixing bacterium, designated strain SCSIO N0430, was isolated from a mangrove sediment sample. Analysis of the sequence of the gene responsible for nitrogen fixation in this strain indicated a close relationship to an uncultured bacterium ZNZ-D11 (GenBank accession no. JF896696). 16S rRNA gene sequence analysis revealed that this isolate had less than 93 % similarity to its closest relative, DQHS4. A phylogenetic tree reconstructed based on 16S rRNA gene sequences revealed that strain SCSIO N0430 was a member of the phylum . Chemotaxonomic and physiological characteristics, including phospholipids and major fatty acids, readily distinguished the isolate from established members of the phylum It is concluded that strain SCSIO N0430 represents a novel genus and species, for which the name gen. nov., sp. nov. is proposed, with the type strain of the species SCSIO N0430 ( = KCTC 32129 = DSM 27148 = JCM 19152). Based on phylogenetic characteristics and 16S rRNA gene signature nucleotide patterns, the three genera , and are proposed to make up a novel family, fam. nov., in the order .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.052779-0
2014-03-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/875.html?itemId=/content/journal/ijsem/10.1099/ijs.0.052779-0&mimeType=html&fmt=ahah

References

  1. Choi J. H., Im W. T., Yoo J. S., Lee S. M., Moon D. S., Kim H. J., Rhee S. K., Roh D. H.. ( 2008;). Paenibacillus donghaensis sp. nov., a xylan-degrading and nitrogen-fixing bacterium isolated from East Sea sediment. . J Microbiol Biotechnol 18:, 189–193.[PubMed]
    [Google Scholar]
  2. Coates J. D., Lonergan D. J., Philips E. J., Jenter H., Lovley D. R.. ( 1995;). Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. . Arch Microbiol 164:, 406–413. [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  4. Denger K., Warthmann R., Ludwig W., Schink B.. ( 2002;). Anaerophaga thermohalophila gen. nov., sp. nov., a moderately thermohalophilic, strictly anaerobic fermentative bacterium. . Int J Syst Evol Microbiol 52:, 173–178.[PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Groth I., Rodríguez C., Schütze B., Schmitz P., Leistner E., Goodfellow M.. ( 2004;). Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp. nov. and K. terrestris sp. nov.. Int J Syst Evol Microbiol 54:, 2121–2129. [CrossRef][PubMed]
    [Google Scholar]
  7. Guerinot M. L., Colwell R. R.. ( 1985;). Enumeration, isolation, and characterization of N2-fixing bacteria from seawater. . Appl Environ Microbiol 50:, 350–355.[PubMed]
    [Google Scholar]
  8. Holguin G., Bashan Y.. ( 1996;). Nitrogen fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.). . Soil Biol Biochem 28:, 1651–1660. [CrossRef]
    [Google Scholar]
  9. Holmes D. E., Nevin K. P., Lovley D. R.. ( 2004;). Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov.. Int J Syst Evol Microbiol 54:, 1591–1599. [CrossRef][PubMed]
    [Google Scholar]
  10. Holmes D. E., Nevin K. P., Woodard T. L., Peacock A. D., Lovley D. R.. ( 2007;). Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. . Int J Syst Evol Microbiol 57:, 701–707. [CrossRef][PubMed]
    [Google Scholar]
  11. Kelly K. L.. ( 1964;). Inter-Society Color Council–National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. Washington, DC:: US Government Printing Office;.
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  14. Kirchman D. L.. ( 2002;). The ecology of Cytophaga-Flavobacteria in aquatic environments. . FEMS Microbiol Ecol 39:, 91–100.[PubMed]
    [Google Scholar]
  15. Krieg N. R., Ludwig W., Whitman W. B., Hedlund B. P., Paster B. J., James T. S., Ward N., Brown D., Parte A.. (editors) ( 2011;). Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4. New York:: Springer;.
    [Google Scholar]
  16. Kroppenstedt R. M.. ( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. . J Liq Chromatogr 5:, 2359–2367. [CrossRef]
    [Google Scholar]
  17. Kyaruzi J. J., Kyewalyanga M. S., Muruke M. H. S.. ( 2003;). Cyanobacteria composition and impact of seasonality on their in situ nitrogen fixation rate in a mangrove ecosystem adjacent to Zanzibar Town. . Western Indian Ocean J Mar Sci 2:, 35–44.
    [Google Scholar]
  18. Loganathan P., Nair S.. ( 2004;). Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). . Int J Syst Evol Microbiol 54:, 1185–1190. [CrossRef][PubMed]
    [Google Scholar]
  19. Lugomela C., Bergman B.. ( 2002;). Biological N2-fixation on mangrove pneumatophores: preliminary observations and perspectives. . Ambio 31:, 612–613.[PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Minnikin D., Collins M., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Microbiol 47:, 87–95. [CrossRef]
    [Google Scholar]
  22. Minnikin D., O’Donnell A., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  23. Na H., Kim S., Moon E. Y., Chun J.. ( 2009;). Marinifilum fragile gen. nov., sp. nov., isolated from tidal flat sediment. . Int J Syst Evol Microbiol 59:, 2241–2246. [CrossRef][PubMed]
    [Google Scholar]
  24. Poly F., Monrozier L. J., Bally R.. ( 2001;). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. . Res Microbiol 152:, 95–103. [CrossRef][PubMed]
    [Google Scholar]
  25. Qu L. Y., Zhu F. L., Hong X. G., Gao W., Chen J. H., Sun X. Q.. ( 2011;). Sunxiuqinia elliptica gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from sediment in a sea cucumber farm. . Int J Syst Evol Microbiol 61:, 2885–2889. [CrossRef][PubMed]
    [Google Scholar]
  26. Rameshkumar N., Fukui Y., Sawabe T., Nair S.. ( 2008;). Vibrio porteresiae sp. nov., a diazotrophic bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). . Int J Syst Evol Microbiol 58:, 1608–1615. [CrossRef][PubMed]
    [Google Scholar]
  27. Ravikumar S., Kathiresan K., Thadedus S., Selvam M. B., Shanthy S.. ( 2004;). Nitrogen-fixing azotobacters from mangrove habitat and their utility as marine biofertilizers. . J Exp Mar Biol Ecol 312:, 5–17. [CrossRef]
    [Google Scholar]
  28. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  30. Sievert S. M., Kuever J., Muyzer G.. ( 2000;). Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). . Appl Environ Microbiol 66:, 3102–3109. [CrossRef][PubMed]
    [Google Scholar]
  31. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  32. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. ( 1997;). Proposal for a new hierarchic classification system, Actinobacteria classis nov.. Int J Syst Bacteriol 47:, 479–491. [CrossRef]
    [Google Scholar]
  33. Takai K., Abe M., Miyazaki M., Koide O., Nunoura T., Imachi H., Inagaki F., Kobayashi T.. ( 2012;). Sunxiuqinia faeciviva sp. nov., a facultatively anaerobic organoheterotroph of the Bacteroidetes isolated from deep subseafloor sediment. . Int J Syst Evol Microbiol. [CrossRef][PubMed]
    [Google Scholar]
  34. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  36. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  37. Toledo G., Bashan Y., Soeldner A.. ( 1995;). In vitro colonization and increase in nitrogen fixation of seedling roots of black mangrove inoculated by a filamentous cyanobacteria. . Can J Microbiol 41:, 1012–1020. [CrossRef]
    [Google Scholar]
  38. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  39. Williams S. T., Sharp M. E., Holt J. G.. (editors) ( 1989;). Bergey’s Manual of Systematic Bacteriology, vol. 4. Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  40. Zhilina T. N., Appel R., Probian C., Brossa E. L., Harder J., Widdel F., Zavarzin G. A.. ( 2004;). Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. . Arch Microbiol 182:, 244–253. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.052779-0
Loading
/content/journal/ijsem/10.1099/ijs.0.052779-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error