1887

Abstract

Five obligately anaerobic, Gram-stain-negative, saccharolytic and proteolytic, non-spore-forming bacilli (strains CD3 : 27, CD3 : 28, CD3 : 33, CD3 : 32 and CD3 : 34) are described. All five strains were isolated from the small intestine of a female child with coeliac disease. Cells of the five strains were short rods or coccoid cells with longer filamentous forms seen sporadically. The organisms produced acetic acid and succinic acid as major metabolic end products. Phylogenetic analysis based on comparative 16S rRNA gene sequence analysis revealed close relationships between CD3 : 27, CD3 : 28 and CD3 : 33, between CD3 : 32 and CCUG 55407, and between CD3 : 34 and CCUG 4944B. Strains CD3 : 27, CD3 : 28 and CD3 : 33 were clearly different from all recognized species within the genus and related most closely to but distinct from . Based on 16S rRNA, RNA polymerase β-subunit () and 60 kDa chaperonin protein subunit () gene sequencing, and phenotypic, chemical and biochemical properties, strains CD3 : 27, CD3 : 28 and CD3 : 33 are considered to represent a novel species within the genus , for which the name sp. nov. is proposed. Strain CD3 : 28 ( = CCUG 60371 = DSM 26989) is the type strain of the proposed novel species. All five strains were able to form homologous aggregates, in which tube-like structures were connecting individual bacteria cells. The five strains were able to bind to human intestinal carcinoma cell lines at 37 °C.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.052647-0
2013-11-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4218.html?itemId=/content/journal/ijsem/10.1099/ijs.0.052647-0&mimeType=html&fmt=ahah

References

  1. Alauzet C., Marchandin H., Lozniewski A.. ( 2010;). New insights into Prevotella diversity and medical microbiology. . Future Microbiol 5:, 1695–1718. [CrossRef][PubMed]
    [Google Scholar]
  2. Dewhirst F. E., Chen T., Izard J., Paster B. J., Tanner A. C., Yu W. H., Lakshmanan A., Wade W. G.. ( 2010;). The human oral microbiome. . J Bacteriol 192:, 5002–5017. [CrossRef][PubMed]
    [Google Scholar]
  3. Downes J., Hooper S. J., Wilson M. J., Wade W. G.. ( 2008;). Prevotella histicola sp. nov., isolated from the human oral cavity. . Int J Syst Evol Microbiol 58:, 1788–1791. [CrossRef][PubMed]
    [Google Scholar]
  4. Euzéby J. P.. ( 2013;). List of prokaryotic names with standing in nomenclature. . www.bacterio.cict.fr/classifgenerafamilies.html
  5. Forsberg G., Fahlgren A., Hörstedt P., Hammarström S., Hernell O., Hammarström M.-L.. ( 2004;). Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. . Am J Gastroenterol 99:, 894–904. [CrossRef][PubMed]
    [Google Scholar]
  6. Hara-Kaonga B., Pistole T. G.. ( 2007;). A dual fluorescence flow cytometric analysis of bacterial adherence to mammalian host cells. . J Microbiol Methods 69:, 37–43. [CrossRef][PubMed]
    [Google Scholar]
  7. Haraldsson G., Meurman J. H., Könönen E., Holbrook W. P.. ( 2005;). Properties of hemagglutination by Prevotella melaninogenica. . Anaerobe 11:, 285–289. [CrossRef][PubMed]
    [Google Scholar]
  8. Hayashi H., Shibata K., Sakamoto M., Tomita S., Benno Y.. ( 2007;). Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. . Int J Syst Evol Microbiol 57:, 941–946. [CrossRef][PubMed]
    [Google Scholar]
  9. Hedberg M., Moore E. R. B., Svensson-Stadler L., Hörstedt P., Baranov V., Hernell O., Nyunt Wai S., Hammarström S., Hammarström M.-L.. ( 2012;). Lachnoanaerobaculum gen. nov., a new genus in the Lachnospiraceae; characterization of Lachnoanaerobaculum umeaense gen. nov., sp. nov., isolated from the human small intestine, Lachnoanaerobaculum orale sp. nov., isolated from saliva and reclassification of Eubacterium saburreum (Prévot) Holdeman and Moore 1970 as Lachnoanaerobaculum saburreum comb. nov.. Int J Syst Evol Microbiol 62:, 2685–2690. [CrossRef][PubMed]
    [Google Scholar]
  10. Ivarsson A., Persson L.-Å., Nyström L., Ascher H., Cavell B., Danielsson L., Dannaeus A., Lindberg T., Lindquist B.. & other authors ( 2000;). Epidemic of coeliac disease in Swedish children. . Acta Paediatr 89:, 165–171. [CrossRef][PubMed]
    [Google Scholar]
  11. Jousimies-Somer H. R., Summanen P., Citron D. M., Baron E. J., Wexler H. M., Finegold S. M.. ( 2002;). Wadsworth-KTL anaerobic bacteriology manual, , 6th edn.. Belmont, CA:: Star Publishing Company;.
    [Google Scholar]
  12. Moncla B., Braham P.. ( 1989;). Detection of sialidase (neuraminidase) by using 2′-(4-methylumbelliferyl)α-d-N-acetylneuraminic acid in a filter paper spot test. . J Clin Microbiol 27:, 182–184.[PubMed]
    [Google Scholar]
  13. Myléus A., Hernell O., Gothefors L., Hammarström M.-L., Persson L.-Å., Stenlund H., Ivarsson A.. ( 2012;). Early infections are associated with increased risk for celiac disease: an incident case-referent study. . BMC Pediatr 12:, 194. [CrossRef][PubMed]
    [Google Scholar]
  14. Olivares M., Laparra J. M., Sanz Y.. ( 2013;). Host genotype, intestinal microbiota and inflammatory disorders. . Br J Nutr 109: (Suppl 2), S76–S80. [CrossRef][PubMed]
    [Google Scholar]
  15. Olsson C., Hernell O., Hörnell A., Lönnberg G., Ivarsson A.. ( 2008;). Difference in celiac disease risk between Swedish birth cohorts suggests an opportunity for primary prevention. . Pediatrics 122:, 528–534. [CrossRef][PubMed]
    [Google Scholar]
  16. Ou G., Hedberg M., Hörstedt P., Baranov V., Forsberg G., Drobni M., Sandström O., Wai S. N., Johansson I.. & other authors ( 2009;). Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease. . Am J Gastroenterol 104:, 3058–3067. [CrossRef][PubMed]
    [Google Scholar]
  17. Sakamoto M., Ohkuma M.. ( 2010;). Usefulness of the hsp60 gene for the identification and classification of Gram-negative anaerobic rods. . J Med Microbiol 59:, 1293–1302. [CrossRef][PubMed]
    [Google Scholar]
  18. Sayers E. W., Barrett T., Benson D. A., Bolton E., Bryant S. H., Canese K., Chetvernin V., Church D. M., Dicuccio M.. & other authors ( 2010;). Database resources of the National Center for Biotechnology Information. . Nucleic Acids Res 38: (Database issue), D5–D16. [CrossRef][PubMed]
    [Google Scholar]
  19. Shah H. N., Collins D. M.. ( 1990;). Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. . Int J Syst Bacteriol 40:, 205–208. [CrossRef][PubMed]
    [Google Scholar]
  20. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  21. Urdiain M., López-López A., Gonzalo C., Busse H. J., Langer S., Kämpfer P., Rosselló-Móra R.. ( 2008;). Reclassification of Rhodobium marinum and Rhodobium pfennigii as Afifella marina gen. nov. comb. nov. and Afifella pfennigii comb. nov., a new genus of photoheterotrophic Alphaproteobacteria and emended descriptions of Rhodobium, Rhodobium orientis and Rhodobium gokarnense. . Syst Appl Microbiol 31:, 339–351. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.052647-0
Loading
/content/journal/ijsem/10.1099/ijs.0.052647-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error