gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family isolated from surface seawater, and emended descriptions of the genera and Free

Abstract

A Gram-stain-negative, strictly aerobic, rod-shaped, non-flagellated, non-spore-forming and gliding marine bacterium, designated strain CC-AMZ-304, was isolated from coastal surface seawater near Taichung harbour, Taiwan. Strain CC-AMZ-304 predominantly synthesized zeaxanthin and thus formed yellow colonies on marine agar. The novel strain showed an unstable phylogenetic position, although sharing high pairwise 16S rRNA gene sequence similarities of 95.9–94.9, 95.7 and 95.1–93.9 % with species ( = 4), SC17 and species ( = 7), respectively. The polar lipid profile of strain CC-AMZ-304 consisted of phosphatidylethanolamine, five unidentified lipids, one unidentified phospholipid, two unidentified aminolipids and one unidentified glycolipid. The major (>5 % of the total) fatty acids were iso-C, iso-C G, iso-C 3-OH, iso-C 3-OH and Cω5. The DNA G+C content was 36.0 mol%. Menaquinone-6 (MK-6) was the sole respiratory quinone and the major polyamine was triamine -homospermidine. Phylogenetic distinctiveness, unique polar lipid composition, presence of significant amounts of branched hydroxyl fatty acids (iso-C 3-OH and iso-C 3-OH) and a low amount of anteiso-C, and several additional distinguishing biochemical features clearly discriminated strain CC-AMZ-304 from the type species of the genera and . Thus, based on data from the present polyphasic study, strain CC-AMZ-304 is considered to represent a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed; the type strain of is CC-AMZ-304 ( = JCM 18557 = BCRC 80463). Emended descriptions of the genera and are also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.052621-0
2014-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/138.html?itemId=/content/journal/ijsem/10.1099/ijs.0.052621-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990 ). Basic local alignment search tool. . J Mol Biol 215, 403410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Asker D., Beppu T., Ueda K. ( 2007a ). Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae . . Syst Appl Microbiol 30, 291296. [View Article] [PubMed]
    [Google Scholar]
  3. Asker D., Beppu T., Ueda K. ( 2007b ). Zeaxanthinibacter enoshimensis gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae, isolated from seawater off Enoshima Island, Japan. . Int J Syst Evol Microbiol 57, 837843. [View Article] [PubMed]
    [Google Scholar]
  4. Barrow G. I., Feltham R. K. A. (editors) ( 1993 ). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [View Article]
    [Google Scholar]
  5. Bernardet J. F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002 ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52, 10491070. [View Article] [PubMed]
    [Google Scholar]
  6. Collins M. D. ( 1985 ). Analysis of isoprenoid quinones. . Methods Microbiol 18, 329366. [View Article]
    [Google Scholar]
  7. Embley T. M., Wait R. ( 1994 ). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121161. Edited by Goodfellow M., O’Donnell A. G. . Chichester:: Wiley;.
    [Google Scholar]
  8. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  9. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  10. Fitch W. M. ( 1971 ). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Biol 20, 406416. [View Article]
    [Google Scholar]
  11. GCG ( 1995 ). Wisconsin Package Version 8.1 Program Manual. Madison, WI:: Computer Group;.
    [Google Scholar]
  12. Hameed A., Arun A. B., Ho H. P., Chang C. M., Rekha P. D., Lee M. R., Singh S., Young C. C. ( 2011 ). Supercritical carbon dioxide micronization of zeaxanthin from moderately thermophilic bacteria Muricauda lutaonensis CC-HSB-11T . . J Agric Food Chem 59, 41194124. [View Article] [PubMed]
    [Google Scholar]
  13. Hameed A., Shahina M., Lin S. Y., Sridhar K. R., Young L. S., Lee M. R., Chen W. M., Chou J. H., Young C. C. ( 2012 ). Siansivirga zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing member of the family Flavobacteriaceae isolated from coastal seawater of Taiwan. . FEMS Microbiol Lett 333, 3745. [View Article] [PubMed]
    [Google Scholar]
  14. Heiner C. R., Hunkapiller K. L., Chen S. M., Glass J. I., Chen E. Y. ( 1998 ). Sequencing multimegabase-template DNA with BigDye terminator chemistry. . Genome Res 8, 557561.[PubMed]
    [Google Scholar]
  15. Jeong S. H., Park M. S., Jin H. M., Lee K., Park W., Jeon C. O. ( 2013 ). Aestuariibaculum suncheonense gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from a tidal flat and emended descriptions of the genera Gaetbulibacter and Tamlana . . Int J Syst Evol Microbiol 63, 332338. [View Article] [PubMed]
    [Google Scholar]
  16. Jung S. Y., Kang S. J., Lee M. H., Lee S. Y., Oh T. K., Yoon J. H. ( 2005 ). Gaetbulibacter saemankumensis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a tidal flat sediment in Korea. . Int J Syst Evol Microbiol 55, 18451849. [View Article] [PubMed]
    [Google Scholar]
  17. Kämpfer P., Kroppenstedt R. M. ( 1996 ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42, 9891005. [View Article]
    [Google Scholar]
  18. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  19. Kimura M. ( 1980 ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16, 111120. [View Article] [PubMed]
    [Google Scholar]
  20. Kirchman D. L. ( 2002 ). The ecology of CytophagaFlavobacteria in aquatic environments. . FEMS Microbiol Ecol 39, 91100.[PubMed]
    [Google Scholar]
  21. Kirchman D. L., Yu L., Cottrell M. T. ( 2003 ). Diversity and abundance of uncultured Cytophaga-like bacteria in the Delaware estuary. . Appl Environ Microbiol 69, 65876596. [View Article] [PubMed]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  23. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [View Article]
    [Google Scholar]
  24. Montero-Calasanz M. D., Göker M., Rohde M., Spröer C., Schumann P., Busse H.-J., Schmid M., Tindall B. J., Klenk H.-P., Camacho M. ( 2013 ). Chryseobacterium hispalense sp. nov., a plant growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery and emendation of the species Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . . Int J Syst Evol Microbiol (in press). [View Article] [PubMed]
    [Google Scholar]
  25. Murray R. G. E., Doetsch R. N., Robinow C. F. ( 1994 ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 2141. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Park S. C., Choe H. N., Baik K. S., Lee K. H., Seong C. N. ( 2012 ). Gaetbulibacter aestuarii sp. nov., isolated from shallow coastal seawater, and emended description of the genus Gaetbulibacter . . Int J Syst Evol Microbiol 62, 150154. [View Article] [PubMed]
    [Google Scholar]
  27. Reichenbach H. ( 1992 ). The order Cytophagales . . In The Prokaryotes, , 2nd edn., vol. 4, pp. 36313675. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. . Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  28. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  29. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20, 16.
    [Google Scholar]
  30. Scherer P., Kneifel H. ( 1983 ). Distribution of polyamines in methanogenic bacteria. . J Bacteriol 154, 13151322.[PubMed]
    [Google Scholar]
  31. Shahina M., Hameed A., Lin S.-Y., Hsu Y.-H., Liu Y.-C., Cheng I.-C., Lee M.-R., Lai W.-A., Lee R.-J., Young C.-C. ( 2013 ). Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium . . Int J Syst Evol Microbiol 63, 34153422. [View Article] [PubMed]
    [Google Scholar]
  32. Shindo K., Kikuta K., Suzuki A., Katsuta A., Kasai H., Yasumoto-Hirose M., Matsuo Y., Misawa N., Takaichi S. ( 2007 ). Rare carotenoids, (3R)-saproxanthin and (3R,2′S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities. . Appl Microbiol Biotechnol 74, 13501357. [View Article] [PubMed]
    [Google Scholar]
  33. Smibert R. M., Krieg N. R. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  34. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  35. Teather R. M., Wood P. J. ( 1982 ). Use of Congo red–polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. . Appl Environ Microbiol 43, 777780.[PubMed]
    [Google Scholar]
  36. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997 ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25, 48764882. [View Article] [PubMed]
    [Google Scholar]
  37. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. ( 2010 ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60, 249266. [View Article] [PubMed]
    [Google Scholar]
  38. Watts D., MacBeath J. R. ( 2001 ). Automated fluorescent DNA sequencing on the ABI PRISM 310 Genetic Analyzer. . Methods Mol Biol 167, 153170.[PubMed]
    [Google Scholar]
  39. Yang S. J., Cho J. C. ( 2008 ). Gaetbulibacter marinus sp. nov., isolated from coastal seawater, and emended description of the genus Gaetbulibacter . . Int J Syst Evol Microbiol 58, 315318. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.052621-0
Loading
/content/journal/ijsem/10.1099/ijs.0.052621-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed