1887

Abstract

An actinobacterial strain was isolated from a sediment sample from Chorao Island, in Goa province, India, and subjected to a taxonomic investigation. The isolate, designated NIO-1021, was a Gram-stain positive, aerobic, non-motile and coccoid. Strain NIO-1021 was identified as a member of the genus by a polyphasic approach. Strain NIO-1021 could be differentiated from other members of the genus on the basis of physiology and 16S rRNA gene sequence analysis. The 16S rRNA gene sequence similarity of strain NIO-1021 to the most closely related species, KCTC 9943, was 98.6 % with 19 nt differences). Furthermore, DNA–DNA hybridization analysis revealed that the novel strain had lower relatedness with the type strains of other members of the genus . The strain formed a monophyletic clade with with 100 % bootstrap values. The major phospholipids were phosphatidylglycerol, diphosphatidylglycerol and two unidentified lipids. The predominant menaquinone was MK-7(H). The major fatty acids were anteiso-C, iso-C and anteiso-C. The DNA GC content of strain NIO-1021 was 60.5 mol%. Chemotaxonomic and phylogenetic properties of the strain were consistent with its classification as representing a member of the genus . On the basis of phenotypic, chemotypic and molecular characteristics, strain NIO-1021 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed, with strain NIO-1021 ( = NCIM 5455 = DSM 25126 = CCTCC AA 209050) as the type strain.

Erratum
This article contains a correction applying to the following content:
Corrigendum: Kocuria indica sp. nov., isolated from a sediment sample
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.052548-0
2014-03-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/869.html?itemId=/content/journal/ijsem/10.1099/ijs.0.052548-0&mimeType=html&fmt=ahah

References

  1. Dong X. Z., Cai M. Y.. ( 2001;). Manual of Systematics and Identification of General Bacteria. Beijing:: Science Press;.
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  3. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 2002;). phylip (phylogeny inference package), version 3.6a. Distributed by the author.. Department of Genome Sciences, University of Washington;, Seattle, USA:.
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. Flügge C.. ( 1886;). Die Mikroorganismen. Part 2, , 3rd edn.. Leipzig:: F. C. W. Vogel;.
    [Google Scholar]
  8. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H. N.. ( 1974;). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol 24:, 54–63. [CrossRef]
    [Google Scholar]
  9. Hasegawa T., Takizawa M., Tanida S.. ( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. . J Gen Microbiol 29:, 319–322. [CrossRef]
    [Google Scholar]
  10. Kim S. B., Nedashkovskaya O. I., Mikhailov V. V., Han S. K., Kim K. O., Rhee M. S., Bae K. S.. ( 2004;). Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. . Int J Syst Evol Microbiol 54:, 1617–1620. [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  12. Kloos W. E., Tornabene T. G., Schleifer K. H.. ( 1974;). Isolation and characterization of micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae. . Int J Syst Bacteriol 24:, 79–101. [CrossRef]
    [Google Scholar]
  13. Kovács G., Burghardt J., Pradella S., Schumann P., Stackebrandt E., Màrialigeti K.. ( 1999;). Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). . Int J Syst Bacteriol 49:, 167–173. [CrossRef][PubMed]
    [Google Scholar]
  14. Kroppenstedt R. M.. ( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver-loaded ion exchanger. . J Liq Chromatogr 5:, 2359–2367. [CrossRef]
    [Google Scholar]
  15. Leifson E.. ( 1960;). Atlas of Bacterial Flagellation. London:: Academic Press;.
    [Google Scholar]
  16. Li W. J., Zhang Y. Q., Schumann P., Chen H. H., Hozzein W. N., Tian X. P., Xu L. H., Jiang C. L.. ( 2006;). Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt. . Int J Syst Evol Microbiol 56:, 733–737. [CrossRef][PubMed]
    [Google Scholar]
  17. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. ( 2007;). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. . Int J Syst Evol Microbiol 57:, 1424–1428. [CrossRef][PubMed]
    [Google Scholar]
  18. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  19. Mayilraj S., Kroppenstedt R. M., Suresh K., Saini H. S.. ( 2006;). Kocuria himachalensis sp. nov., an actinobacterium isolated from the Indian Himalayas. . Int J Syst Evol Microbiol 56:, 1971–1975. [CrossRef][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Migula W.. ( 1900;). System der Bakterien. Jena:: Gustav Fischer;.
    [Google Scholar]
  22. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  23. Park E.-J., Roh S. W., Kim M.-S., Jung M.-J., Shin K. S., Bae J.-W.. ( 2010a;). Kocuria koreensis sp. nov., isolated from fermented seafood. . Int J Syst Evol Microbiol 60:, 140–143. [CrossRef][PubMed]
    [Google Scholar]
  24. Park E.-J., Kim M.-S., Roh S. W., Jung M.-J., Bae J.-W.. ( 2010b;). Kocuria atrinae sp. nov., isolated from traditional Korean fermented seafood. . Int J Syst Evol Microbiol 60:, 914–918. [CrossRef][PubMed]
    [Google Scholar]
  25. Reddy G. S., Prakash J. S., Prabahar V., Matsumoto G. I., Stackebrandt E., Shivaji S.. ( 2003;). Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. . Int J Syst Evol Microbiol 53:, 183–187. [CrossRef][PubMed]
    [Google Scholar]
  26. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  27. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20:, 16.
    [Google Scholar]
  28. Seo Y. B., Kim D. E., Kim G. D., Kim H. W., Nam S. W., Kim Y. T., Lee J. H.. ( 2009;). Kocuria gwangalliensis sp. nov., an actinobacterium isolated from seawater. . Int J Syst Evol Microbiol 59:, 2769–2772. [CrossRef][PubMed]
    [Google Scholar]
  29. Shirling E. B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  31. Stackebrandt E., Koch C., Gvozdiak O., Schumann P.. ( 1995;). Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend.. Int J Syst Bacteriol 45:, 682–692. [CrossRef][PubMed]
    [Google Scholar]
  32. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef][PubMed]
    [Google Scholar]
  33. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  34. Tang S. K., Wang Y., Lou K., Mao P. H., Xu L. H., Jiang C. L., Kim C. J., Li W. J.. ( 2009;). Kocuria halotolerans sp. nov., an actinobacterium isolated from a saline soil in China. . Int J Syst Evol Microbiol 59:, 1316–1320. [CrossRef][PubMed]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  36. Tittsler R. P., Sandholzer L. A.. ( 1936;). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31:, 575–580.[PubMed]
    [Google Scholar]
  37. Tvrzová L., Schumann P., Sedláček I., Páčová Z., Spröer C., Verbarg S., Kroppenstedt R. M.. ( 2005;). Reclassification of strain CCM 132, previously classified as Kocuria varians, as Kocuria carniphila sp. nov.. Int J Syst Evol Microbiol 55:, 139–142. [CrossRef][PubMed]
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  39. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55:, 1149–1153. [CrossRef][PubMed]
    [Google Scholar]
  40. Yun J.-H., Roh S. W., Jung M.-J., Kim M.-S., Park E.-J., Shin K.-S., Nam Y.-D., Bae J.-W.. ( 2011;). Kocuria salsicia sp. nov., isolated from salt-fermented seafood. . Int J Syst Evol Microbiol 61:, 286–289. [CrossRef][PubMed]
    [Google Scholar]
  41. Zhou G., Luo X., Tang Y., Zhang L., Yang Q., Qiu Y., Fang C.. ( 2008;). Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China. . Int J Syst Evol Microbiol 58:, 1304–1307. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.052548-0
Loading
/content/journal/ijsem/10.1099/ijs.0.052548-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error