1887

Abstract

Phylogenies generated from whole genome sequence (WGS) data provide definitive means of bacterial isolate characterization for typing and taxonomy. The species status of strains recently defined with conventional taxonomic approaches as representing was examined by the analysis of sequences derived from WGS data, specifically: (i) 53 ribosomal protein subunit () genes (ribosomal multi-locus sequence typing, rMLST); and (ii) 246 core genes (core genome MLST, cgMLST). These data were compared with phylogenies derived from 16S and 23S rRNA gene sequences, demonstrating that the strains were monophyletic with strains described previously as representing ‘ var. ’ and that this group was of equivalent taxonomic status to other well-described species of the genus . Phylogenetic analyses also indicated that and should be considered the same species as and that should be considered the same species as . Analyses using rMLST showed that some strains currently defined as belonging to the genus were more closely related to species belonging to other genera within the family; however, whole genome analysis of a more comprehensive selection of strains from within the family would be necessary to confirm this. We suggest that strains previously identified as representing ‘ var. ’ and deposited in culture collections should be renamed . Finally, one of the strains of was able to ferment lactose, due to the presence of β-galactosidase and lactose permease genes, a characteristic previously thought to be unique to , which therefore cannot be thought of as diagnostic for this species; however, the rMLST and cgMLST analyses confirm that is most closely related to .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.052431-0
2013-10-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/10/3920.html?itemId=/content/journal/ijsem/10.1099/ijs.0.052431-0&mimeType=html&fmt=ahah

References

  1. Bennett J. S., Jolley K. A., Earle S. G., Corton C., Bentley S. D., Parkhill J., Maiden M. C.. ( 2012;). A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. . Microbiology 158:, 1570–1580. [CrossRef][PubMed]
    [Google Scholar]
  2. Berger U.. ( 1971;). [Neisseria mucosa var. heidelbergensis]. . Z Med Mikrobiol Immunol 156:, 154–158 (in German). [CrossRef][PubMed]
    [Google Scholar]
  3. Branham S. E.. ( 1930;). A new meningococcus-like organism (Neisseria flavescens n. sp.) from epidemic meningitis. . Public Health Rep 45:, 845–849. [CrossRef]
    [Google Scholar]
  4. Bryant D., Moulton V.. ( 2004;). Neighbor-net: an agglomerative method for the construction of phylogenetic networks. . Mol Biol Evol 21:, 255–265. [CrossRef][PubMed]
    [Google Scholar]
  5. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  6. Guibourdenche M., Popoff M. Y., Riou J. Y.. ( 1986;). Deoxyribonucleic acid relatedness among Neisseria gonorrhoeae, N. meningitidis, N. lactamica, N. cinerea and “Neisseria polysaccharea”. . Ann Inst Pasteur Microbiol 137B:, 177–185. [CrossRef][PubMed]
    [Google Scholar]
  7. Harmsen D., Singer C., Rothgänger J., Tønjum T., de Hoog G. S., Shah H., Albert J., Frosch M.. ( 2001;). Diagnostics of Neisseriaceae and Moraxellaceae by ribosomal DNA sequencing: ribosomal differentiation of medical microorganisms. . J Clin Microbiol 39:, 936–942. [CrossRef][PubMed]
    [Google Scholar]
  8. Huson D. H., Bryant D.. ( 2006;). Application of phylogenetic networks in evolutionary studies. . Mol Biol Evol 23:, 254–267. [CrossRef][PubMed]
    [Google Scholar]
  9. Jolley K. A., Maiden M. C.. ( 2010;). BIGSdb: Scalable analysis of bacterial genome variation at the population level. . BMC Bioinformatics 11:, 595. [CrossRef][PubMed]
    [Google Scholar]
  10. Jolley K. A., Maiden M. C.. ( 2013;). Automated extraction of typing information for bacterial pathogens from whole genome sequence data: Neisseria meningitidis as an exemplar. . Euro Surveill 18:, 20379.[PubMed]
    [Google Scholar]
  11. Jolley K. A., Bliss C. M., Bennett J. S., Bratcher H. B., Brehony C., Colles F. M., Wimalarathna H., Harrison O. B., Sheppard S. K.. & other authors ( 2012a;). Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. . Microbiology 158:, 1005–1015. [CrossRef][PubMed]
    [Google Scholar]
  12. Jolley K. A., Hill D. M., Bratcher H. B., Harrison O. B., Feavers I. M., Parkhill J., Maiden M. C.. ( 2012b;). Resolution of a meningococcal disease outbreak from whole-genome sequence data with rapid Web-based analysis methods. . J Clin Microbiol 50:, 3046–3053. [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  14. Knapp J. S., Hook E. W. III. ( 1988;). Prevalence and persistence of Neisseria cinerea and other Neisseria spp. in adults. . J Clin Microbiol 26:, 896–900.[PubMed]
    [Google Scholar]
  15. Maiden M. C.. ( 2008;). Population genomics: diversity and virulence in the Neisseria. . Curr Opin Microbiol 11:, 467–471. [CrossRef][PubMed]
    [Google Scholar]
  16. Markowitz V. M., Chen I. M., Palaniappan K., Chu K., Szeto E., Grechkin Y., Ratner A., Anderson I., Lykidis A.. & other authors ( 2010;). The integrated microbial genomes system: an expanding comparative analysis resource. . Nucleic Acids Res 38: (Database issue), D382–D390. [CrossRef][PubMed]
    [Google Scholar]
  17. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  18. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J.. & other authors ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  20. Teng J. L., Yeung M. Y., Yue G., Au-Yeung R. K., Yeung E. Y., Fung A. M., Tse H., Yuen K. Y., Lau S. K., Woo P. C.. ( 2011;). In silico analysis of 16S rRNA gene sequencing based methods for identification of medically important aerobic Gram-negative bacteria. . J Med Microbiol 60:, 1281–1286. [CrossRef][PubMed]
    [Google Scholar]
  21. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  22. Tonjum T.. ( 2005;). Genus I. Neisseria. . In Bergey’s Manual of Systematic Bacteriology, pp. 777–798. Edited by Garrity G. M., Brenner D. J., Krieg N. R., Staley J. R... New York:: Springer;.
    [Google Scholar]
  23. Vedros N. A., Hoke C., Chun P.. ( 1983;). Neisseria macacae sp. nov., a new Neisseria species isolated from the oropharynges of rhesus monkeys (Macaca mulatta). . Int J Syst Bacteriol 33:, 515–520. [CrossRef]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). Report of the ad-hoc-committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  25. Wolfgang W. J., Carpenter A. N., Cole J. A., Gronow S., Habura A., Jose S., Nazarian E. J., Kohlerschmidt D. J., Limberger R.. & other authors ( 2011;). Neisseria wadsworthii sp. nov. and Neisseria shayeganii sp. nov., isolated from clinical specimens. . Int J Syst Evol Microbiol 61:, 91–98. [CrossRef][PubMed]
    [Google Scholar]
  26. Wolfgang W. J., Passaretti T. V., Jose R., Cole J., Coorevits A., Carpenter A. N., Jose S., Van Landschoot A., Izard J.. & other authors ( 2013;). Neisseria oralis sp. nov., isolated from healthy gingival plaque and clinical samples. . Int J Syst Evol Microbiol 63:, 1323–1328. [CrossRef][PubMed]
    [Google Scholar]
  27. Zhu P., Tsang R. S., Tsai C. M.. ( 2003;). Nonencapsulated Neisseria meningitidis strain produces amylopectin from sucrose: altering the concept for differentiation between N. meningitidis and N. polysaccharea. . J Clin Microbiol 41:, 273–278. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.052431-0
Loading
/content/journal/ijsem/10.1099/ijs.0.052431-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error