1887

Abstract

A Gram-staining-negative, non-motile, spore-forming, rod-shaped, marine bacterial strain, CL-KR2, was isolated from tropical seawater near Kosrae, an island in the Federated States of Micronesia. Analysis of the 16S rRNA gene sequence of strain CL-KR2 revealed a clear affiliation with the genus . Based on phylogenetic analysis, strain CL-KR2 showed the closest phylogenetic relationship to CL-CB462, with 16S rRNA gene sequence similarity of 96.6 %. DNA–DNA relatedness between strain CL-KR2 and CL-CB462 was 6.7 % (reciprocal 9.5 %). Strain CL-KR2 grew in the presence of 1–20 % sea salts and the optimal salt concentration was 3.5–5 %. The temperature and pH optima for growth were 35 °C and pH 7.5. The major cellular fatty acids (≥10.0 %) of strain CL-KR2 were iso-C, summed feature 3 (iso-C 2-OH and/or Cω7) and iso-Cω9 and the only isoprenoid quinone was MK-7. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid, two unidentified glycolipids and two unidentified lipids. The genomic DNA G+C content of strain CL-KR2 was 43.2 mol%. The combined phenotypic, chemotaxonomic and phylogenetic data showed that strain CL-KR2 could be distinguished from the only member of the genus with a validly published name. Thus, strain CL-KR2 should be assigned to a novel species in the genus , for which the name sp. nov. is proposed. The type strain is CL-KR2 ( = KCCM 90206 = JCM 18898).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.052340-0
2013-11-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4006.html?itemId=/content/journal/ijsem/10.1099/ijs.0.052340-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Anzai Y., Kudo Y., Oyaizu H.. ( 1997;). The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. . Int J Syst Bacteriol 47:, 249–251. [CrossRef][PubMed]
    [Google Scholar]
  3. Bruns A., Rohde M., Berthe-Corti L.. ( 2001;). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. . Int J Syst Evol Microbiol 51:, 1997–2006. [CrossRef][PubMed]
    [Google Scholar]
  4. Cappuccino J. G., Sherman N.. ( 2002;). Microbiology: a Laboratory Manual, , 6th edn.. Menlo Park, CA:: Benjamin/Cummings;.
    [Google Scholar]
  5. Choi D. H., Zhang G. I., Noh J. H., Kim W. S., Cho B. C.. ( 2009;). Gracilimonas tropica gen. nov., sp. nov., isolated from a Synechococcus culture. . Int J Syst Evol Microbiol 59:, 1167–1172. [CrossRef][PubMed]
    [Google Scholar]
  6. Cole J. R., Chai B., Farris R. J., Wang Q., Kulam-Syed-Mohideen A. S., McGarrell D. M., Bandela A. M., Cardenas E., Garrity G. M., Tiedje J. M.. ( 2007;). The Ribosomal Database Project (RDP-II): introducing myRDP space and quality controlled public data. . Nucleic Acids Res 35:, D169–D172. [CrossRef][PubMed]
    [Google Scholar]
  7. Collins M. D.. ( 1985;). Analysis of isoprenoid quinones. . Methods Microbiol 18:, 329–366. [CrossRef]
    [Google Scholar]
  8. Englen M. D., Kelley L. C.. ( 2000;). A rapid DNA isolation procedure for the identification of Campylobacter jejuni by the polymerase chain reaction. . Lett Appl Microbiol 31:, 421–426. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  10. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  11. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef][PubMed]
    [Google Scholar]
  12. Høvik Hansen G., Sørheim R.. ( 1991;). Improved method for phenotypical characterization of marine bacteria. . J Microbiol Methods 13:, 231–241. [CrossRef]
    [Google Scholar]
  13. Hwang C. Y., Choi D. H., Cho B. C.. ( 2006;). Pedobacter roseus sp. nov., isolated from a hypertrophic pond, and emended description of the genus Pedobacter. . Int J Syst Evol Microbiol 56:, 1831–1836. [CrossRef][PubMed]
    [Google Scholar]
  14. Jang G. I., Cho Y., Cho B. C.. ( 2013;). Pontimonas salivibrio gen. nov., sp. nov., a new member of the family Microbacteriaceae isolated from a seawater reservoir of a solar saltern. . Int J Syst Evol Microbiol 63:, 2124–2131. [CrossRef][PubMed]
    [Google Scholar]
  15. Jeon Y. S., Chung H., Park S., Hur I., Lee J. H., Chun J.. ( 2005;). jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. . Bioinformatics 21:, 3171–3173. [CrossRef][PubMed]
    [Google Scholar]
  16. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  17. Kim Y. G., Choi D. H., Hyun S., Cho B. C.. ( 2007;). Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. . Int J Syst Evol Microbiol 57:, 409–413. [CrossRef][PubMed]
    [Google Scholar]
  18. Kim H. M., Choi D. H., Hwang C. Y., Cho B. C.. ( 2008;). Nocardioides salarius sp. nov., isolated from seawater enriched with zooplankton. . Int J Syst Evol Microbiol 58:, 2056–2064. [CrossRef][PubMed]
    [Google Scholar]
  19. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  20. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–206. [CrossRef]
    [Google Scholar]
  21. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  22. Lemos M. L., Toranzo A. E., Barja J. L.. ( 1985;). Modified medium for the oxidation-fermentation test in the identification of marine bacteria. . Appl Environ Microbiol 49:, 1541–1543.[PubMed]
    [Google Scholar]
  23. Lyman J., Fleming R. H.. ( 1940;). Composition of sea water. . J Mar Res 3:, 134–146.
    [Google Scholar]
  24. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganism. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  26. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Scheidle M., Dittrich B., Klinger J., Ikeda H., Klee D., Büchs J.. ( 2011;). Controlling pH in shake flasks using polymer-based controlled-release discs with pre-determined release kinetics. . BMC Biotechnol 11:, 25. [CrossRef][PubMed]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  30. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  31. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S.. ( 2001;). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov.. Int J Syst Evol Microbiol 51:, 1639–1652. [CrossRef][PubMed]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  33. Urios L., Intertaglia L., Lesongeur F., Lebaron P.. ( 2008;). Balneola alkaliphila sp. nov., a marine bacterium isolated from the Mediterranean Sea. . Int J Syst Evol Microbiol 58:, 1288–1291. [CrossRef][PubMed]
    [Google Scholar]
  34. Wang Y. X., Liu J. H., Xiao W., Zhang X. X., Li Y. Q., Lai Y. H., Ji K. Y., Wen M. L., Cui X. L.. ( 2012;). Fodinibius salinus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt mine. . Int J Syst Evol Microbiol 62:, 390–396. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.052340-0
Loading
/content/journal/ijsem/10.1099/ijs.0.052340-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error